Previous |  Up |  Next

Article

Title: Systems of nonlinear delay integral equations modelling population growth in a periodic environment (English)
Author: Cañada, A.
Author: Zertiti, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 633-644
.
Category: math
.
Summary: In this paper we study the existence and uniqueness of positive and periodic solutions of nonlinear delay integral systems of the type $$ x(t) = \int_{t-\tau _1}^t f(s,x(s),y(s))\,ds $$ $$ y(t) = \int_{t-\tau _2}^t g(s,x(s),y(s))\,ds $$ which model population growth in a periodic environment when there is an interaction between two species. For the proofs, we develop an adequate method of sub-supersolutions which provides, in some cases, an iterative scheme converging to the solution. (English)
Keyword: nonlinear integral equations
Keyword: monotone methods
Keyword: population dynamics
Keyword: positive solutions
MSC: 34K15
MSC: 45G10
MSC: 45G15
MSC: 45M15
MSC: 45M20
MSC: 92D25
idZBL: Zbl 0816.45002
idMR: MR1321234
.
Date available: 2009-01-08T18:14:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118705
.
Reference: [1] Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces.Siam Review 18 (1976), 620-709. Zbl 0345.47044, MR 0415432
Reference: [2] Ca nada A.: Method of upper and lower solutions for nonlinear integral equations and an application to an infectious disease model.in ``Dynamics of Infinite Dimensional Systems'', S.N. Chow and J.K. Hale editors, Springer-Verlag, Berlin, Heidelberg, 1987, 39-44. MR 0921896
Reference: [3] Ca nada A., Zertiti A.: Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth.$M^3AS$, Math. Models and Methods in Applied Sciences 4 (1994), 107-120. MR 1259204
Reference: [4] Ca nada A., Zertiti A.: Topological methods in the study of positive solutions for some nonlinear delay integral equations.to appear in J. Nonlinear Analysis. MR 1305767
Reference: [5] Cooke K.L., Kaplan J.L.: A periodic threshold theorem for epidemics and population growth.Math. Biosciences 31 (1976), 87-104. MR 0682251
Reference: [6] Guo D., Lakshmikantham V.: Positive solutions of integral equations arising in infectious diseases.J. Math. Anal. Appl. 134 (1988), 1-8. MR 0958849
Reference: [7] Krasnoselskii M.A.: Positive solutions of operator equations.P. Noordhoff, Groningen, The Netherlands, 1964. MR 0181881
Reference: [8] Nussbaum R.D.: A periodicity threshold theorem for some nonlinear integral equations.Siam J. Math. Anal. 9 (1978), 356-376. Zbl 0385.45007, MR 0477924
Reference: [9] Smith H.L.: On periodic solutions of a delay integral equations modelling epidemics.J. Math. Biology 4 (1977), 69-80. MR 0504059
Reference: [10] Torrejon R.: A note on a nonlinear integral equation from the theory of epidemics.J. Nonl. Anal. 14 (1990), 483-488. Zbl 0695.45008, MR 1044076
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_5.pdf 224.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo