Previous |  Up |  Next

Article

Title: Analytic functions are $\Cal I$-density continuous (English)
Author: Ciesielski, Krzysztof
Author: Larson, Lee
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 645-652
.
Category: math
.
Summary: A real function is $\Cal I$-density continuous if it is continuous with the $\Cal I$-density topology on both the domain and the range. If $f$ is analytic, then $f$ is $\Cal I$-density continuous. There exists a function which is both $C^\infty $ and convex which is not $\Cal I$-density continuous. (English)
Keyword: analytic function
Keyword: $\Cal I$-density continuous
Keyword: $\Cal I$-density topology
MSC: 26A21
MSC: 26E05
MSC: 26E10
idZBL: Zbl 0826.26011
idMR: MR1321235
.
Date available: 2009-01-08T18:14:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118706
.
Reference: [1] Aversa V., Wilczyński W.: Homeomorphisms preserving $\Cal I$-density points.Boll. Un. Mat. Ital. B(7)1 (1987), 275-285. MR 0895464
Reference: [2] Ciesielski K., Larson L.: The space of density continuous functions.Acta Math. Hung. 58 (1991), 289-296. Zbl 0757.26006, MR 1153484
Reference: [3] Poreda W., Wagner-Bojakowska E., Wilczyński W.: A category analogue of the density topology.Fund. Math. 75 (1985), 167-173. MR 0813753
Reference: [4] Wilczyński W.: A generalization of the density topology.Real Anal. Exchange 8(1) (1982-83), 16-20.
Reference: [5] Wilczyński W.: A category analogue of the density topology, approximate continuity, and the approximate derivative.Real Anal. Exchange 10 (1984-85), 241-265. MR 0790803
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_6.pdf 197.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo