| Title: | Analytic functions are $\Cal I$-density continuous (English) | 
| Author: | Ciesielski, Krzysztof | 
| Author: | Larson, Lee | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 35 | 
| Issue: | 4 | 
| Year: | 1994 | 
| Pages: | 645-652 | 
| . | 
| Category: | math | 
| . | 
| Summary: | A real function is $\Cal I$-density continuous if it is continuous with the $\Cal I$-density topology on both the domain and the range. If $f$ is analytic, then $f$ is $\Cal I$-density continuous. There exists a function which is both $C^\infty $ and convex which is not $\Cal I$-density continuous. (English) | 
| Keyword: | analytic function | 
| Keyword: | $\Cal I$-density continuous | 
| Keyword: | $\Cal I$-density topology | 
| MSC: | 26A21 | 
| MSC: | 26E05 | 
| MSC: | 26E10 | 
| idZBL: | Zbl 0826.26011 | 
| idMR: | MR1321235 | 
| . | 
| Date available: | 2009-01-08T18:14:05Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118706 | 
| . | 
| Reference: | [1] Aversa V., Wilczyński W.: Homeomorphisms preserving $\Cal I$-density points.Boll. Un. Mat. Ital. B(7)1 (1987), 275-285. MR 0895464 | 
| Reference: | [2] Ciesielski K., Larson L.: The space of density continuous functions.Acta Math. Hung. 58 (1991), 289-296. Zbl 0757.26006, MR 1153484 | 
| Reference: | [3] Poreda W., Wagner-Bojakowska E., Wilczyński W.: A category analogue of the density topology.Fund. Math. 75 (1985), 167-173. MR 0813753 | 
| Reference: | [4] Wilczyński W.: A generalization of the density topology.Real Anal. Exchange 8(1) (1982-83), 16-20. | 
| Reference: | [5] Wilczyński W.: A category analogue of the density topology, approximate continuity, and the approximate derivative.Real Anal. Exchange 10 (1984-85), 241-265. MR 0790803 | 
| . |