Previous |  Up |  Next

Article

Title: On CCC boolean algebras and partial orders (English)
Author: Hajnal, A.
Author: Juhász, I.
Author: Szentmiklóssy, Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 537-544
.
Category: math
.
Summary: We partially strengthen a result of Shelah from [Sh] by proving that if $\kappa =\kappa ^{\omega }$ and $P$ is a CCC partial order with e.g. $|P|\leq \kappa ^{+\omega }$ (the $\omega ^{\text{th}}$ successor of $\kappa $) and $|P|\leq 2^{\kappa }$ then $P$ is $\kappa $-linked. (English)
Keyword: boolean algebra
Keyword: partial order
Keyword: CCC
MSC: 03E05
MSC: 04A20
MSC: 05C69
MSC: 06A07
MSC: 06E10
idZBL: Zbl 0938.06001
idMR: MR1485073
.
Date available: 2009-01-08T18:35:59Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118950
.
Reference: [EK] Engelking R., Karlowicz M.: Some theorems of set-theory and their topological consequences.Fund. Math. 57 (1965), 275-286. Zbl 0137.41904, MR 0196693
Reference: [HJSh] Hajnal A., Juhász I., Shelah S.: Splitting strongly almost disjoint families.Transactions of the AMS 295 (1986), 369-387. MR 0831204
Reference: [HJSz] Hajnal A., Juhász I., Szentmiklóssy Z.: Compact CCC spaces of prescribed density.in: Combinatorics, P. Erdös is 80, Bolyai Soc. Math. Studies, Keszthely, 1993, pp.239-252. MR 1249715
Reference: [K] Kunen K.: Set Theory.North Holland, Amsterdam, 1979. Zbl 0960.03033, MR 0756630
Reference: [S] Shelah S.: Remarks on Boolean algebras.Algebra Universalis 11 (1980), 77-89. Zbl 0451.06015, MR 0593014
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_9.pdf 206.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo