Previous |  Up |  Next

Article

Title: Choice principles in elementary topology and analysis (English)
Author: Herrlich, Horst
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 545-552
.
Category: math
.
Summary: Many fundamental mathematical results fail in {\bf{ZF}}, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results --- old and new --- that specify how much ``choice'' is needed {\it precisely} to validate each of certain basic analytical and topological results. (English)
Keyword: Axiom of (Countable) Choice
Keyword: Boolean Prime Ideal Theorem
Keyword: Theorems of Ascoli
Keyword: Baire
Keyword: Čech-Stone and Tychonoff
Keyword: compact
Keyword: Lindelöf and orderable spaces
MSC: 03E25
MSC: 04A25
MSC: 26A03
MSC: 26A15
MSC: 54A35
MSC: 54B10
MSC: 54C35
MSC: 54D20
MSC: 54D30
MSC: 54D65
MSC: 54E45
MSC: 54E50
MSC: 54E52
idZBL: Zbl 0938.54007
idMR: MR1485074
.
Date available: 2009-01-08T18:36:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118951
.
Reference: [1] Alas O.T.: The Axiom of choice and two particular forms of Tychonoff theorem.Portugal. Math. 28 (1968), 75-76. MR 0281600
Reference: [2] Banaschewski B.: Compactification and the axiom of choice.unpublished manuscript, 1979.
Reference: [3] Bentley H.L., Herrlich H.: Compactness and rings of continuous functions - without the axiom of choice.to appear. Zbl 0986.54029, MR 1722566
Reference: [4] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces.to appear. Zbl 0922.03068, MR 1617460
Reference: [5] Blass A.: A model without ultrafilters.Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331. Zbl 0365.02054, MR 0476510
Reference: [6] Comfort W.W.: A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues.Fund. Math. 63 (1988), 97-110. MR 0236880
Reference: [7] Good C., Tree I.J.: Continuing horrors of topology without choice.Topol. Appl. 63 (1995), 79-90. Zbl 0822.54001, MR 1328621
Reference: [8] Goodstein R.L.: Existence in Mathematics.in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82. Zbl 0162.30901, MR 0247998
Reference: [9] Halpern J.D., Lévy A.: The Boolean prime ideal theorem does not imply the axiom of choice.Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134. MR 0284328
Reference: [10] Herrlich H.: Compactness and the Axiom of Choice.Appl. Categ. Structures 4 (1996), 1-14. Zbl 0881.54027, MR 1393958
Reference: [11] Herrlich H.: An effective construction of a free ultrafilter.Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206. MR 1429654
Reference: [12] Herrlich H.: The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem.to appear. Zbl 0880.54005, MR 1602169
Reference: [13] Herrlich H.: The Ascoli Theorem is equivalent to the Axiom of Choice.to appear.
Reference: [14] Herrlich H., Steprāns J.: Maximal filters, continuity and choice principles.to appear in Quaestiones Math. 20 (1997). MR 1625478
Reference: [15] Herrlich H., Strecker G.E.: When in $\Bbb N$ Lindelöf?.to appear in Comment. Math. Univ. Carolinae 38 (1997). MR 1485075
Reference: [16] Hilbert D.: Über das Unendliche.Mathem. Annalen 95 (1926), 161-190. MR 1512272
Reference: [17] Jaegermann M.: The Axiom of Choice and two definitions of continuity.Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704. Zbl 0252.02059, MR 0195711
Reference: [18] Jech T.: Eine Bemerkung zum Auswahlaxiom.Časopis Pěst. Mat. 93 (1968), 30-31. Zbl 0167.27402, MR 0233706
Reference: [19] Jech T.J.: The Axiom of Choice.North Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [20] Jensen R.B.: Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice.J. Symb. Logic 31 (1966), 294.
Reference: [21] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982
Reference: [22] Loś J., Ryll-Nardzewski C.: Effectiveness of the representation theory for Boolean algebras.Fund. Math. 41 (1955), 49-56. MR 0065527
Reference: [23] Maddy P.: Believing the axioms I..J. Symb. Logic 53 (1988), 481-511. Zbl 0652.03033, MR 0947855
Reference: [24] Moore G.H.: Zermelo's Axiom of Choice. Its Origins, Developments and Influence.Springer, New York, 1982. MR 0679315
Reference: [25] Mycielski J.: Two remarks on Tychonoff's product theorem.Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441. Zbl 0138.17703, MR 0215731
Reference: [26] Pincus D.: Adding Dependent Choice to the Boolean Prime Ideal Theorem.Logic Colloq. 76 (1977), 547-565. MR 0480027
Reference: [27] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice II..North Holland, Amsterdam, 1985. MR 0798475
Reference: [28] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem.Bull. Amer. Math. Soc. 60 (1954), 389.
Reference: [29] Sierpiñski W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne.Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691.
Reference: [30] Sierpiñski W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse.Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152.
Reference: [31] Douwen E.K.: Horrors of topology without AC: a nonnormal orderable space.Proc. Amer. Math. Soc. 95 (1985), 101-105. Zbl 0574.03039, MR 0796455
Reference: [32] Ward L.E.: A weak Tychonoff theorem and the axiom of choice.Proc. Amer. Math. Soc. 13 (1962), 757-758. Zbl 0112.14301, MR 0186537
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_10.pdf 190.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo