Previous |  Up |  Next

Article

Title: When is $\bold N$ Lindelöf? (English)
Author: Herrlich, Horst
Author: Strecker, George E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 553-556
.
Category: math
.
Summary: Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$. (English)
Keyword: axiom of choice
Keyword: axiom of countable choice
Keyword: Lindelöf space
Keyword: separable space
Keyword: (sequential) continuity
Keyword: (Dedekind-) finiteness
MSC: 03E25
MSC: 04A25
MSC: 26A03
MSC: 26A15
MSC: 54A35
MSC: 54D20
idZBL: Zbl 0938.54008
idMR: MR1485075
.
Date available: 2009-01-08T18:36:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118952
.
Reference: Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces.in preparation. Zbl 0922.03068
Reference: Herrlich H.: Compactness and the Axiom of Choice.Appl. Categ. Struct. 4 (1996), 1-14. Zbl 0881.54027, MR 1393958
Reference: Herrlich H., Steprāns J.: Maximal Filters, continuity, and choice principles.to appear in Quaestiones Math. MR 1625478
Reference: Jaegermann M.: The axiom of choice and two definitions of continuity.Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699-704. Zbl 0252.02059, MR 0195711
Reference: Jech T.: Eine Bemerkung zum Auswahlaxiom.Časopis pro pěstování matematiky 9 (1968), 30-31. Zbl 0167.27402, MR 0233706
Reference: Sierpiński W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne.Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688-691.
Reference: Sierpiński W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse.Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97-152.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_11.pdf 174.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo