Previous |  Up |  Next

Article

Title: Totality of product completions (English)
Author: Adámek, Jiří
Author: Sousa, Lurdes
Author: Tholen, Walter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 9-24
.
Category: math
.
Summary: Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category $\Cal A$ by asking the Yoneda embedding $\Cal A \rightarrow [\Cal A^{op},\Cal Set]$ to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion $\Pi \Cal A$ of $\Cal A$. We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product completion iff measurable cardinals cannot be arbitrarily large. (English)
Keyword: multitotal category
Keyword: multisolid functor
Keyword: formal product completion
MSC: 18A05
MSC: 18A22
MSC: 18A35
MSC: 18A40
idZBL: Zbl 1034.18004
idMR: MR1756923
.
Date available: 2009-01-08T18:58:02Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119137
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.John Wiley and Sons, New York, 1990. MR 1051419
Reference: [2] Adámek J., Rosický J.: Accessible and Locally Presentable Categories.Cambridge University Press, Cambridge, 1995.
Reference: [3] Adámek J., Tholen W.: Total categories with generators.J. Algebra 133 (1990), 63-78. MR 1063381
Reference: [4] Börger R., Tholen W.: Total categories and solid functors.Canad. J. Math. 42.1 (1990), 213-229. MR 1051726
Reference: [5] Börger R., Tholen W., Wischnewsky M.B., Wolff H.: Compact and hypercomplete categories.J. Pure Appl. Algebra 21 (1981), 120-140. MR 0614376
Reference: [6] Carboni A., Johnstone P.T.: Connected limits, familial representability and Artin glueing.Math. Struct. in Comp. Science 5 (1995), 1-19. Zbl 0849.18002, MR 1377312
Reference: [7] Diers Y.: Catègories localisables.These de doctorat d'état, Université Pierre et Marie Curie - Paris 6, 1977.
Reference: [8] Diers Y.: Catègories localement multiprésentables.Arch. Math. 34 (1980), 344-356. Zbl 0453.18002, MR 0593951
Reference: [9] Gabriel P., Ulmer F.: Lokal präsentierbare Kategorien.Lecture Notes in Math. 221, Springer, Berlin, 1971. Zbl 0225.18004, MR 0327863
Reference: [10] Isbell J.R.: Adequate subcategories.Illinois J. Math. 4 (1960), 541-552. Zbl 0104.01704, MR 0175954
Reference: [11] Kelly M.: A survey of totality for enriched and ordinary categories.Cahiers Topologie Géom. Différentielle Catégoriques 27 (1986), 109-131. Zbl 0593.18007, MR 0850527
Reference: [12] Rosický J., Tholen W.: Accessibility and the solution set condition.J. Pure Appl. Algebra 98 (1995), 189-208. MR 1319969
Reference: [13] Sousa L.: Note on multisolid categories.J. Pure Appl. Algebra 129 (1998), 201-205. Zbl 0939.18003, MR 1624462
Reference: [14] Street R.: The family approach to total cocompleteness and toposes.Trans. Amer. Math. Soc. 284 (1984), 355-369. Zbl 0512.18001, MR 0742429
Reference: [15] Street R., Walters R.F.C.: Yoneda structures on $2$-categories.J. Algebra 50 (1978), 350-379. Zbl 0401.18004, MR 0463261
Reference: [16] Tholen W.: Semi-topological functors I.J. Pure Appl. Algebra 15 (1979), 53-73. Zbl 0413.18001
Reference: [17] Tholen W.: Note on total categories.Bull. Austral. Math. Soc. 21 (1980), 169-173. Zbl 0431.18002, MR 0574836
Reference: [18] Tholen W.: MacNeille completions of concrete categories with local properties.Comment. Math., Univ. St. Pauli 28 (1979), 179-202. MR 0578672
Reference: [19] Wood R.J.: Some remarks on total categories.J. Algebra 75 (1982), 538-545. Zbl 0504.18001, MR 0653907
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_2.pdf 291.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo