Previous |  Up |  Next

Article

Title: Universal objects in quasiconstructs (English)
Author: Rother, R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 25-39
.
Category: math
.
Summary: The general theory of J'onsson-classes is generalized to strongly smooth quasiconstructs in such a way that it also allows the construction of universal categories. One example of the theory is the existence of a concrete universal category over every base category. Properties are given which are (under certain conditions) equivalent to the existence of homogeneous universal objects. Thereby, we disprove the existence of a homogeneous {\it C\/}-universal category. The notion of homogeneity is strengthened to extremal homogeneity. Extremally homogeneous universal objects, for which additionally every morphism between smaller subobjects is extendable to an endomorphism, are constructed in so called extremally smooth quasiconstructs. (English)
Keyword: universal object
Keyword: universal category
Keyword: smooth category
Keyword: homogeneous
Keyword: J'onsson class
Keyword: special structure
MSC: 18A40
MSC: 18B15
idZBL: Zbl 1034.18005
idMR: MR1756924
.
Date available: 2009-01-08T18:58:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119138
.
Reference: [1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories.Wiley Interscience, New York, 1990. MR 1051419
Reference: [2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Springer, Berlin-Heidelberg, 1974. Zbl 0298.02004, MR 0396267
Reference: [3] Herrlich H., Strecker G.E.: Category Theory.Heldermann, Berlin, 1979. Zbl 1125.18300, MR 0571016
Reference: [4] Jónsson B.: Homogeneous universal relational systems.Math. Scand. 8 (1960), 137-142. MR 0125021
Reference: [5] Kučera L.: On universal concrete categories.Algebra Universalis 5 (1975), 149-151. MR 0404385
Reference: [6] Negrepontis S.: The Stone Space of the Saturated Boolean Algebras.Proc. Internat. Sympos. on Topology and its Applications, Herceg-Novi, August 1968. Zbl 0223.06002, MR 0248057
Reference: [7] Rother R.: Realizations of topological categories.Applied Categorical Structures, to appear. Zbl 0993.18003, MR 1865613
Reference: [8] Trnková V.: Sum of categories with amalgamated subcategory.Comment. Math. Univ. Carolinae 6.4 (1965), 449-474. MR 0190208
Reference: [9] Trnková V.: Universal categories.Comment. Math. Univ. Carolinae 7.2 (1966), 143-206. MR 0202808
Reference: [10] Trnková V.: Universal concrete categories and functors.Cahiers Topologie Géom. Différentielle Catégoriques, Vol. 34-3 (1993), 239-256. MR 1239471
Reference: [11] Trnková V.: Universalities.Applied Categorical Structures 2 (1994), 173-185. MR 1283435
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_3.pdf 272.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo