Previous |  Up |  Next

Article

Title: Tower extension of topological constructs (English)
Author: Zhang, Dexue
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 41-51
.
Category: math
.
Summary: Let $L$ be a completely distributive lattice and {\bf C} a topological construct; a process is given in this paper to obtain a topological construct $\bold C (L)$, called the tower extension of $\bold C$ (indexed by $L$). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot of nice properties, for example, it preserves concrete reflectivity, concrete coreflectivity, and it preserves convenient hulls of topological construct, i.e., the extensional topological hulls (ETH), the cartesian closed topological hulls (CCTH) and the topological universe hulls (TUH) of topological constructs. (English)
Keyword: topological construct
Keyword: extensionality
Keyword: cartesian closedness
Keyword: tower extension
Keyword: completely distributive lattice
MSC: 18B15
MSC: 18B30
MSC: 54B30
idZBL: Zbl 1038.54006
idMR: MR1756925
.
Date available: 2009-01-08T18:58:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119139
.
Reference: [1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories.Wiley, New York, 1990. MR 1051419
Reference: [2] Adámek J., Koubek V.: Cartesian closed initial completions.Topology Appl. 11 (1980), 1-16. MR 0550868
Reference: [3] Antoine P.: Étude élémentaire des catégories d'ensembles structrés.Bull. Soc. Math. Belgique 18 (1960), 142-164, 387-414.
Reference: [4] Blasco N., Lowen R.: Fuzzy neighbourhood convergence spaces.Fuzzy Sets and Systems 76 (1995), 395-406. MR 1365406
Reference: [5] Bourdaud G.: Some cartesian closed topological categories of convergence spaces.in E. Binz, H. Herrlich (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.93-108. Zbl 0332.54004, MR 0493924
Reference: [6] Brock P., Kent D.C.: Approach spaces, limit tower spaces and probabilistic convergence spaces.Applied Categorical Structures 5 (1997), 99-110. Zbl 0885.54008, MR 1456517
Reference: [7] Burton M.H.: The relationship between a fuzzy uniformity and its family of $\alpha$-level uniformities.Fuzzy Sets and Systems 54 (1993), 311-315. Zbl 0871.54009, MR 1215574
Reference: [8] Gierz G., et al: A Compendium of Continuous Lattices.Springer, Berlin, 1980. Zbl 0452.06001, MR 0614752
Reference: [9] Herrlich H.: Cartesian closed topological categories.Math. Colloq. Univ. Cape Town 9 (1974), 1-16. Zbl 0318.18011, MR 0460414
Reference: [10] Herrlich H.: Are there convenient subcategories of Top?.Topology Appl. 15 (1983), 263-271. Zbl 0538.18004, MR 0694546
Reference: [11] Herrlich H.: Topological improvements of categories of structured sets.Topology Appl. 27 (1987), 145-155. Zbl 0632.54008, MR 0911688
Reference: [12] Herrlich H.: Hereditary topological constructs.in Z. Frolík (ed.), General Topology and its relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp.240-262. Zbl 0662.18003, MR 0952611
Reference: [13] Herrlich H.: On the representability of partial morphisms in Top and in related constructs.in F. Borceux (ed.), Categorical Algebra and its Applications, (Proc. Louvain-La-Neuve, 1987), Lecture Notes in Mathematics, 1348, Springer, Berlin, 1988, pp.143-153. Zbl 0662.18004, MR 0975967
Reference: [14] Herrlich H., Nel L.D.: Cartesian closed topological hulls.Proc. Amer. Math. Soc. 62 (1977), 215-222. Zbl 0361.18006, MR 0476831
Reference: [15] Herrlich H., Zhang D.: Categorical properties of probabilistic convergence spaces.Applied Categorical Structures 6 (1998), 495-513. Zbl 0917.54003, MR 1657510
Reference: [16] Herrlich H., Lowen-Colebunders E., Schwarz F.: Improving Top: PrTop and PsTop.in H. Herrlich, H.E. Porst (eds.), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp.21-34. Zbl 0753.18003, MR 1147916
Reference: [17] Lowen E., Lowen R.: Topological quasitopos hulls of categories containing topological and metric objects.Cahiers Top. Géom. Diff. Cat. 30 (1989), 213-228. Zbl 0706.18002, MR 1029625
Reference: [18] Lowen R.: Fuzzy uniform spaces.J. Math. Anal. Appl. 82 (1981), 370-385. Zbl 0494.54005, MR 0629763
Reference: [19] Lowen R.: Fuzzy neighbourhood spaces.Fuzzy Sets and Systems 7 (1982), 165-189.
Reference: [20] Lowen R.: Approach spaces, a common supercategory of TOP and MET.Math. Nachr. 141 (1989), 183-226. Zbl 0676.54012, MR 1014427
Reference: [21] Lowen R.: Approach Spaces, the missing link in the Topology-Uniformity-Metric triad.Oxford Mathematical Monographs, Oxford University Press, 1997. Zbl 0891.54001, MR 1472024
Reference: [22] Lowen R., Windels B.: AUnif: A common supercategory of pMet and Unif.Internat. J. Math. Math. Sci. 21 (1998), 1-18. Zbl 0890.54024, MR 1486952
Reference: [23] Schwarz F.: Description of topological universes.in H. Ehrig et al, (eds.), Categorical Methods in Computor Science with Aspects from Topology, (Proc. Berlin, 1988), Lecture Notes in Computor Science, 393, Springer, Berlin, 1989, pp.325-332. MR 1048372
Reference: [24] Preuss G.: Theory of Topological Structures, an Approach to Categorical Topology.D. Reidel Publishing Company, Dordrecht, 1988. Zbl 0649.54001, MR 0937052
Reference: [25] Richardson G.D., Kent D.C.: Probabilistic convergence spaces.J. Austral. Math. Soc., (series A) 61 (1996), 400-420. Zbl 0943.54002, MR 1420347
Reference: [26] Wuyts P.: On the determination of fuzzy topological spaces, and fuzzy neighbourhood spaces by their level topologies.Fuzzy Sets and Systems 12 (1984), 71-85. Zbl 0574.54004, MR 0734394
Reference: [27] Wyler O.: Are there topoi in topology.in E. Binz, H. Herrlich, (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.699-719. Zbl 0354.54001, MR 0458346
Reference: [28] Wyler O.: Lecture Notes on Topoi and Quasitopoi.World Scientific, Singapore, 1991. Zbl 0727.18001, MR 1094373
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_4.pdf 225.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo