Previous |  Up |  Next

Article

Title: Centered-Lindelöfness versus star-Lindelöfness (English)
Author: Bonanzinga, M.
Author: Matveev, M. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 111-122
.
Category: math
.
Summary: We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces. (English)
Keyword: star-Lindelöf
Keyword: centered-Lindelöf
Keyword: linked-Lindelöf
Keyword: CCC-Lindelöf
Keyword: metaLin- \linebreak delöf
Keyword: paraLindelöf
Keyword: weakly separable
Keyword: CCC
Keyword: $C_p(X)$
MSC: 54D20
MSC: 54G20
idZBL: Zbl 1037.54502
idMR: MR1756931
.
Date available: 2009-01-08T18:59:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119145
.
Reference: [1] Arhangel'skii A.V.: Topological function spaces.Moskov. Gos. Univ. Publ., Moscow, 1989 (in Russian); English translation in: Mathematics and its Applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519
Reference: [2] Arhangel'skii A.V.: $C_p$-theory.Recent Progress in General Topology, M. Hušek and J. van Mill Eds., Elsevier Sci. Pub. B.V., 1992, pp.1-56. Zbl 0932.54015
Reference: [3] Arhangel'skii A.V., Ponomarev V.I.: Foundations of General Topology: Problems and Exercises.Moscow, Nauka Publ., 1974 (in Russian); English translation in: Mathematics and its applications, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 13 (1984). MR 0785749
Reference: [4] Asanov M.O.: On cardinal invariants of the spaces of all continuous functions (in Russian).Contemporary Topology and Set Theory, Izhevsk 2 (1979), 8-12.
Reference: [5] Berner A.J.: Spaces with dense conditionally compact subsets.Proc. Amer. Mat. Soc. 81 (1979), 137-142. MR 0589156
Reference: [6] Beshimov R.B.: Weakly separable spaces and mappings.Thesis, Moscow State University, 1994.
Reference: [7] Beshimov R.B.: Some properties of weakly separable spaces Uzbek. Mat. Zh..1 (1994), 7-11. MR 1350283
Reference: [8] Bonanzinga M.: Star-Lindelöf and absolutely star-Lindelöf spaces.Questions Answers Gen. Topology 16 (1998), 79-104. Zbl 0931.54019, MR 1642032
Reference: [9] van Douwen E.K.: Density of compactifications.Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.97-110. Zbl 0379.54006, MR 0442887
Reference: [10] van Douwen E.K.: The Pixley-Roy topology on spaces of subsets.Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.111-134. Zbl 0372.54006, MR 0440489
Reference: [11] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993
Reference: [12] Dow A., Junnila H., Pelant J.: Weak covering properties of weak topologies.Proc. London Math. Soc. (3) 75 (1997), 2 349-368. Zbl 0886.54014, MR 1455860
Reference: [13] Engelking R.: General Topology.Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [14] Fleischman W.M.: A new extension of countable compactness.Fund. Math. 67 (1970), 1-9. Zbl 0194.54601, MR 0264608
Reference: [15] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces.Mem. of Numazu College of Tech. 18 (1983), 105-108.
Reference: [16] Ikenaga S.: Topological concept between Lindelöf and Pseudo-Lindelöf.Res. Rep. of Nara Nat. College of Technology 26 (1990), 103-108.
Reference: [17] Levy R., McDowell R.H.: Dense subsets of $\beta X$.Proc. Amer. Mat. Soc. 507 (1975), 426-429. Zbl 0313.54025, MR 0370506
Reference: [18] Matveev M.V.: Pseudocompact and related spaces.Thesis, Moscow State University, 1985.
Reference: [19] Matveev M.V.: A survey on star covering properties Topology Atlas, preprint No 330 (1998) http://www.unipissing.ca/topology/v/a/a/a/19.htm..
Reference: [20] Matveev M.V., Uspenskii V.V.: On star-compact spaces with a $G_{\delta}$-diagonal.Zbornik Radova Filosofskogo Fakulteta v Nisu, Ser. Mat. 6:2 (1992), 281-290. Zbl 0911.54020, MR 1244780
Reference: [21] Miller A.W.: Special subsets of the real line.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.201-233. Zbl 0588.54035, MR 0776624
Reference: [22] Pixley C., Roy P.: Uncompletable Moore spaces.Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Alabama, 1969, pp.75-85. Zbl 0259.54022, MR 0397671
Reference: [23] Pol R.: A theorem on weak topology on $C(X)$ for compact scattered $X$.Fund. Math. 106 2 (1980), 135-140. MR 0580591
Reference: [24] Przymusiński T., Tall F.D.: The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition.Fund. Math 85 (1974), 291-297. MR 0367934
Reference: [25] Reznichenko E.A.: A pseudocompact space in which only the sets of full cardinality are not closed and not discrete.Vestnik MGU, Ser. I: Matem., Mekh., 1989, No. 6, pp.69-70 (in Russian); English translation in: Moscow Univ. Math. Bull. 44 (1989) 70-71. MR 1065983
Reference: [26] Scott B.M.: Pseudocompact, metacompact spaces are compact.Topology Proc. 4 (1979), 577-587. MR 0598295
Reference: [27] Tall F.D.: Normality versus collectionwise normality.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.685-732. Zbl 0552.54011, MR 0776634
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_10.pdf 250.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo