| Title:
             | 
Centered-Lindelöfness versus star-Lindelöfness (English) | 
| Author:
             | 
Bonanzinga, M. | 
| Author:
             | 
Matveev, M. V. | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
41 | 
| Issue:
             | 
1 | 
| Year:
             | 
2000 | 
| Pages:
             | 
111-122 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We discuss various generalizations of the class of Lindelöf spaces and study the difference between two of these generalizations, the classes of star-Lindelöf and centered-Lindelöf spaces. (English) | 
| Keyword:
             | 
star-Lindelöf | 
| Keyword:
             | 
centered-Lindelöf | 
| Keyword:
             | 
linked-Lindelöf | 
| Keyword:
             | 
CCC-Lindelöf | 
| Keyword:
             | 
metaLin- \linebreak delöf | 
| Keyword:
             | 
paraLindelöf | 
| Keyword:
             | 
weakly separable | 
| Keyword:
             | 
CCC | 
| Keyword:
             | 
$C_p(X)$ | 
| MSC:
             | 
54D20 | 
| MSC:
             | 
54G20 | 
| idZBL:
             | 
Zbl 1037.54502 | 
| idMR:
             | 
MR1756931 | 
| . | 
| Date available:
             | 
2009-01-08T18:59:01Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119145 | 
| . | 
| Reference:
             | 
[1] Arhangel'skii A.V.: Topological function spaces.Moskov. Gos. Univ. Publ., Moscow, 1989 (in Russian); English translation in: Mathematics and its Applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519 | 
| Reference:
             | 
[2] Arhangel'skii A.V.: $C_p$-theory.Recent Progress in General Topology, M. Hušek and J. van Mill Eds., Elsevier Sci. Pub. B.V., 1992, pp.1-56. Zbl 0932.54015 | 
| Reference:
             | 
[3] Arhangel'skii A.V., Ponomarev V.I.: Foundations of General Topology: Problems and Exercises.Moscow, Nauka Publ., 1974 (in Russian); English translation in: Mathematics and its applications, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster 13 (1984). MR 0785749 | 
| Reference:
             | 
[4] Asanov M.O.: On cardinal invariants of the spaces of all continuous functions (in Russian).Contemporary Topology and Set Theory, Izhevsk 2 (1979), 8-12. | 
| Reference:
             | 
[5] Berner A.J.: Spaces with dense conditionally compact subsets.Proc. Amer. Mat. Soc. 81 (1979), 137-142. MR 0589156 | 
| Reference:
             | 
[6] Beshimov R.B.: Weakly separable spaces and mappings.Thesis, Moscow State University, 1994. | 
| Reference:
             | 
[7] Beshimov R.B.: Some properties of weakly separable spaces Uzbek. Mat. Zh..1 (1994), 7-11. MR 1350283 | 
| Reference:
             | 
[8] Bonanzinga M.: Star-Lindelöf and absolutely star-Lindelöf spaces.Questions Answers Gen. Topology 16 (1998), 79-104. Zbl 0931.54019, MR 1642032 | 
| Reference:
             | 
[9] van Douwen E.K.: Density of compactifications.Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.97-110. Zbl 0379.54006, MR 0442887 | 
| Reference:
             | 
[10] van Douwen E.K.: The Pixley-Roy topology on spaces of subsets.Set-Theoretic Topology, G.M. Reed Ed., N.Y., 1977, pp.111-134. Zbl 0372.54006, MR 0440489 | 
| Reference:
             | 
[11] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993 | 
| Reference:
             | 
[12] Dow A., Junnila H., Pelant J.: Weak covering properties of weak topologies.Proc. London Math. Soc. (3) 75 (1997), 2 349-368. Zbl 0886.54014, MR 1455860 | 
| Reference:
             | 
[13] Engelking R.: General Topology.Warszawa, 1977. Zbl 0684.54001, MR 0500780 | 
| Reference:
             | 
[14] Fleischman W.M.: A new extension of countable compactness.Fund. Math. 67 (1970), 1-9. Zbl 0194.54601, MR 0264608 | 
| Reference:
             | 
[15] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces.Mem. of Numazu College of Tech. 18 (1983), 105-108. | 
| Reference:
             | 
[16] Ikenaga S.: Topological concept between Lindelöf and Pseudo-Lindelöf.Res. Rep. of Nara Nat. College of Technology 26 (1990), 103-108. | 
| Reference:
             | 
[17] Levy R., McDowell R.H.: Dense subsets of $\beta X$.Proc. Amer. Mat. Soc. 507 (1975), 426-429. Zbl 0313.54025, MR 0370506 | 
| Reference:
             | 
[18] Matveev M.V.: Pseudocompact and related spaces.Thesis, Moscow State University, 1985. | 
| Reference:
             | 
[19] Matveev M.V.: A survey on star covering properties Topology Atlas, preprint No 330 (1998) http://www.unipissing.ca/topology/v/a/a/a/19.htm.. | 
| Reference:
             | 
[20] Matveev M.V., Uspenskii V.V.: On star-compact spaces with a $G_{\delta}$-diagonal.Zbornik Radova Filosofskogo Fakulteta v Nisu, Ser. Mat. 6:2 (1992), 281-290. Zbl 0911.54020, MR 1244780 | 
| Reference:
             | 
[21] Miller A.W.: Special subsets of the real line.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.201-233. Zbl 0588.54035, MR 0776624 | 
| Reference:
             | 
[22] Pixley C., Roy P.: Uncompletable Moore spaces.Proceedings of the Auburn Topology Conference, Auburn Univ., Auburn, Alabama, 1969, pp.75-85. Zbl 0259.54022, MR 0397671 | 
| Reference:
             | 
[23] Pol R.: A theorem on weak topology on $C(X)$ for compact scattered $X$.Fund. Math. 106 2 (1980), 135-140. MR 0580591 | 
| Reference:
             | 
[24] Przymusiński T., Tall F.D.: The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition.Fund. Math 85 (1974), 291-297. MR 0367934 | 
| Reference:
             | 
[25] Reznichenko E.A.: A pseudocompact space in which only the sets of full cardinality are not closed and not discrete.Vestnik MGU, Ser. I: Matem., Mekh., 1989, No. 6, pp.69-70 (in Russian); English translation in: Moscow Univ. Math. Bull. 44 (1989) 70-71. MR 1065983 | 
| Reference:
             | 
[26] Scott B.M.: Pseudocompact, metacompact spaces are compact.Topology Proc. 4 (1979), 577-587. MR 0598295 | 
| Reference:
             | 
[27] Tall F.D.: Normality versus collectionwise normality.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan Eds., Elsevier Sci. Publ., 1984, pp.685-732. Zbl 0552.54011, MR 0776634 | 
| . |