Previous |  Up |  Next

Article

Title: Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings (English)
Author: Arhangel'skii, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 585-595
.
Category: math
.
Summary: We show that there exists an Abelian topological group $G$ such that the operations in $G$ cannot be extended to the Dieudonné completion $\mu G$ of the space $G$ in such a way that $G$ becomes a topological subgroup of the topological group $\mu G$. This provides a complete answer to a question of V.G. Pestov and M.G. Tkačenko, dating back to 1985. We also identify new large classes of topological groups for which such an extension is possible. The technique developed also allows to find many new solutions to the equation $\upsilon X\times \upsilon Y=\upsilon (X\times Y)$. The key role in the approach belongs to the notion of Moscow space which turns out to be very useful in the theory of $C$-embeddings and interacts especially well with homogeneity. (English)
Keyword: Moscow space
Keyword: Dieudonné completion
Keyword: Hewitt-Nachbin completion
Keyword: $C$-em\-bed\-ding
Keyword: $G_\delta $-dense set
Keyword: topological group
Keyword: Souslin number
Keyword: tightness
Keyword: canonical open set
MSC: 22A05
MSC: 54C35
MSC: 54C45
MSC: 54D50
MSC: 54D60
MSC: 54E15
MSC: 54G20
MSC: 54H11
idZBL: Zbl 1038.54013
idMR: MR1795087
.
Date available: 2009-01-08T19:05:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119191
.
Reference: [1] Arhangel'skii A.V.: Functional tightness, $Q$-spaces, and $\tau $-embeddings.Comment. Math. Univ. Carolinae 24:1 ((1983)), 105-120. MR 0703930
Reference: [2] Arhangel'skii A.V.: On a Theorem of W.W. Comfort and K.A. Ross.Comment. Math. Univ. Carolinae 40:1 (1999), 133-151. MR 1715207
Reference: [3] Arhangel'skii A.V.: Topological groups and $C$-embeddings.submitted, 1999. Zbl 0984.54018
Reference: [4] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28:4 (1976), 673-690. Zbl 0359.54009, MR 0420542
Reference: [5] Blair R.L., Hager A.W.: Notes on the Hewitt realcompactification of a product.Gen. Topol. and Appl. 5 (1975), 1-8. Zbl 0323.54021, MR 0365496
Reference: [6] Comfort W.W.: On the Hewitt realcompactification of the product space.Trans. Amer. Math. Soc. 131 (1968), 107-118. MR 0222846
Reference: [7] Comfort W.W., Negrepontis S.: Extending continuous functions on $X\times Y$ to subsets of $\beta X\times \beta Y$.Fund. Math. 59 (1966), 1-12. Zbl 0185.26304, MR 0200896
Reference: [8] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16:3 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [9] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [10] Frolík Z.: The topological product of two pseudocompact spaces.Czechoslovak Math. J. 10 (1960), 339-349. MR 0116304
Reference: [11] Gillman L., Jerison M.: Rings of Continuous Functions.Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [12] Glicksberg I.: Stone-Čech compactifications of products.Trans. Amer. Math. Soc. 90 (1959), 369-382. Zbl 0089.38702, MR 0105667
Reference: [13] Hewitt E.: Rings of real-valued continuous functions 1..Trans. Amer. Math. Soc. 64 ((1948)), 45-99. MR 0026239
Reference: [14] Hušek M.: Realcompactness of function spaces and $\upsilon (P\times Q)$.Gen. Topol. and Appl. 2 (1972), 165-179. MR 0307181
Reference: [15] Pestov V.G., Tkačenko M.G.: Problem $3.28$.in: Unsolved Problems of Topological Algebra, Academy of Science, Moldova, Kishinev, "Shtiinca" 1985, p.18.
Reference: [16] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and Their Quotients.McGraw-Hill, New York, 1981.
Reference: [17] Stchepin E.V.: On $\kappa $-metrizable spaces.Izv. Akad. Nauk SSSR, Ser. Matem. 43:2 (1979), 442-478. MR 0534603
Reference: [18] Terada T.: Note on $z$-, $C^\ast $-, and $C$-embedded subspaces of products.Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13 (1975), 129-132. Zbl 0333.54008, MR 0391005
Reference: [19] Tkačenko M.G.: The notion of $o$-tightness and $C$-embedded subspaces of products.Topology Appl. 15 (1983), 93-98. MR 0676970
Reference: [20] Tkačenko M.G.: Subgroups, quotient groups, and products of $R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
Reference: [21] Tkačenko M.G.: Introduction to Topological Groups.Topology Appl. 86:3 (1998), 179-231. MR 1623960
Reference: [22] Uspenskij V.V.: Topological groups and Dugundji spaces.Matem. Sb. 180:8 (1989), 1092-1118. MR 1019483
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_14.pdf 234.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo