Previous |  Up |  Next

Article

Title: The property ($\beta $) of Orlicz-Bochner sequence spaces (English)
Author: Kolwicz, Paweł
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 119-132
.
Category: math
.
Summary: A characterization of property $(\beta )$ of an arbitrary Banach space is given. Next it is proved that the Orlicz-Bochner sequence space $l_\Phi (X)$ has the property $(\beta )$ if and only if both spaces $l_\Phi $ and $X$ have it also. In particular the Lebesgue-Bochner sequence space $l_p(X)$ has the property $(\beta )$ iff $X$ has the property $(\beta )$. As a corollary we also obtain a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped with the Luxemburg norm the property $(\beta )$, nearly uniform convexity, the drop property and reflexivity are in pairs equivalent. (English)
Keyword: Orlicz-Bochner space
Keyword: property $(\beta )$
Keyword: Orlicz space
MSC: 46B20
MSC: 46B45
MSC: 46E30
MSC: 46E40
idZBL: Zbl 1056.46020
idMR: MR1825377
.
Date available: 2009-01-08T19:08:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119228
.
Reference: [1] Alherk G., Hudzik H.: Uniformly non-$l_n^{(1)}$ Musielak-Orlicz spaces of Bochner type.Forum Math. 1 (1989), 403-410. MR 1016681
Reference: [2] Cerda J., Hudzik H., Mastyło M.: Geometric properties of Köthe Bochner spaces.Math. Proc. Cambridge Philos. Soc. 120 (1996), 521-533. MR 1388204
Reference: [3] Chen S., Hudzik H.: On some convexities of Orlicz and Orlicz-Bochner spaces.Comment. Math. Univ. Carolinae 29.1 (1988), 13-29. Zbl 0647.46030, MR 0937545
Reference: [4] Clarkson J.A.: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880
Reference: [5] Cui Y., Płuciennik R., Wang T.: On property $(\beta)$ in Orlicz spaces.Arch. Math. 69 (1997), 57-69. Zbl 0894.46023, MR 1452160
Reference: [6] Greim P.: Strongly exposed points in Bochner $L^p$ spaces.Proc. Amer. Math. Soc. 88 (1983), 81-84. MR 0691281
Reference: [7] Hudzik H.: Uniformly non-$l_n^{(1)}$ Orlicz spaces with Luxemburg norm.Studia Math. 81.3 (1985), 271-284. MR 0808569
Reference: [8] Hudzik H., Landes T.: Characteristic of convexity of Köthe function spaces.Math. Ann. 294 (1992), 117-124. Zbl 0761.46016, MR 1180454
Reference: [9] Huff R.: Banach spaces which are nearly uniformly convex.Rocky Mountain J. Math. 10 (1980), 743-749. Zbl 0505.46011, MR 0595102
Reference: [10] Kamińska A.: Uniform rotundity of Musielak-Orlicz sequence spaces.J. Approx. Theory 47 (1986), 302-322. MR 0862227
Reference: [11] Kamińska A.: Rotundity of Orlicz-Musielak sequence spaces.Bull. Acad. Polon. Sci. Math. 29 3-4 (1981), 137-144. MR 0638755
Reference: [12] Kolwicz P.: On property $(\beta)$ in Banach lattices, Calderón-Lozanowskiĭ and Orlicz-Lorentz spaces.submitted. Zbl 0993.46009
Reference: [13] Kolwicz P., Płuciennik R.: P-convexity of Bochner-Orlicz spaces.Proc. Amer. Math. Soc. 126.8 (1998), 2315-2322. MR 1443391
Reference: [14] Kutzarowa D.N.: An isomorphic characterization of property $(\beta)$ of Rolewicz.Note Mat. 10.2 (1990), 347-354. MR 1204212
Reference: [15] Kutzarowa D.N., Maluta E., Prus S.: Property $(\beta)$ implies normal structure of the dual space.Rend. Circ. Math. Palermo 41 (1992), 335-368. MR 1230583
Reference: [16] Lin P.K.: Köthe Bochner Function Spaces.to appear. Zbl 1054.46003, MR 2018062
Reference: [17] Montesinos V.: Drop property equals reflexivity.Studia Math. 87 (1987), 93-100. Zbl 0652.46009, MR 0924764
Reference: [18] Płuciennik R.: On characterization of strongly extreme points in Köthe Bochner spaces.Rocky Mountain J. Math. 27.1 (1997), 307-315. MR 1453105
Reference: [19] Płuciennik R.: Points of local uniform rotundity in Köthe Bochner spaces.Arch. Math. 70 (1998), 479-485. MR 1621994
Reference: [20] Rolewicz S.: On drop property.Studia Math. 85 (1987), 27-35. MR 0879413
Reference: [21] Rolewicz S.: On $\Delta $-uniform convexity and drop property.Studia Math. 87 (1987), 181-191. Zbl 0652.46010, MR 0928575
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_9.pdf 256.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo