Previous |  Up |  Next

Article

Title: On the structure of finite loop capable Abelian groups (English)
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 217-224
.
Category: math
.
Summary: Loop capable groups are groups which are isomorphic to inner mapping groups of loops. In this paper we show that abelian groups $C_p^{k}\times C_p\times C_p$, where $k\geq 2$ and $p$ is an odd prime, are not loop capable groups. We also discuss generalizations of this result. (English)
Keyword: loop
Keyword: group
Keyword: connected transversals
MSC: 20D10
MSC: 20N05
idZBL: Zbl 1174.20345
idMR: MR2338090
.
Date available: 2009-05-05T17:02:26Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119652
.
Reference: [1] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245-354. Zbl 0061.02201, MR 0017288
Reference: [2] Csörgö P.: On connected transversals to abelian subgroups and loop theoretical consequences.Arch. Math. 86 (2006), 499-516. Zbl 1113.20055, MR 2241599
Reference: [3] Huppert B.: Endliche Gruppen I.Springer, Berlin-Heidelberg-New York, 1967. Zbl 0412.20002, MR 0224703
Reference: [4] Kepka T.: On the abelian inner permutation groups of loops.Comm. Algebra 26 (1998), 857-861. Zbl 0913.20043, MR 1606178
Reference: [5] Kepka T., Niemenmaa M.: On multiplication groups of loops.J. Algebra 135 (1990), 112-122. Zbl 0706.20046, MR 1076080
Reference: [6] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups.Arch. Math. 60 (1993), 233-236. MR 1201636
Reference: [7] Niemenmaa M.: On the structure of the inner mapping groups of loops.Comm. Algebra 24 (1996), 135-142. Zbl 0853.20049, MR 1370527
Reference: [8] Niemenmaa M.: On finite loops whose inner mapping groups are abelian.Bull. Austral. Math. Soc. 65 (2002), 477-484. Zbl 1012.20068, MR 1910500
Reference: [9] Niemenmaa M.: On finite loops whose inner mapping groups are abelian II.Bull. Austral. Math. Soc. 71 (2005), 487-492. Zbl 1080.20061, MR 2150938
Reference: [10] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups.Bull. Austral. Math. Soc. 49 (1994), 121-128. Zbl 0799.20020, MR 1262682
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_4.pdf 197.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo