Previous |  Up |  Next

Article

Title: Singular integral characterization of nonisotropic generalized BMO spaces (English)
Author: Crescimbeni, Raquel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 225-238
.
Category: math
.
Summary: We extend a result of Coifman and Dahlberg [{\it Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem\/}, Proc. Sympos. Pure Math., Vol. 35, pp.\,231--234; Amer. Math. Soc., Providence, 1979] on the characterization of $H^p$ spaces by singular integrals of $\Bbb R^n$ with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if $T_\lambda$ is the family of dilations in $\Bbb R^n$ induced by a matrix with a nonnegative eigenvalue, then there exist $2n$ singular integral operators homogeneous with respect to the dilations $T_\lambda$ that characterize BMO$_\varphi$ under a natural condition on $\varphi$. (English)
Keyword: singular integral
Keyword: nonisotropic generalized BMO
MSC: 42B30
MSC: 42B99
MSC: 46E15
idZBL: Zbl 1199.42112
idMR: MR2338091
.
Date available: 2009-05-05T17:02:31Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119653
.
Reference: [CD] Coifman R., Dahlberg B.: Singular integral characterizations of nonisotropic $H^p$ spaces and the F. and M. Riesz theorem.Proc. Sympos. Pure Math., Vol. 35, pp.231-234; Amer. Math. Soc., Providence, 1979. MR 0545260
Reference: [CW] Coifman R., Weiss G.: Analyse harmonique non-conmutative sur certain espaces homogenes.Lecture Notes in Mathematics 242, Springer, Berlin-New York, 1971. MR 0499948
Reference: [C] Crescimbeni R.: Singular integral characterization of functions with conditions on the mean oscillation on spaces of homogeneous type.Rev. Un. Mat. Argentina 39 153-171 (1995). Zbl 0892.42007, MR 1376792
Reference: [FS] Fefferman C., Stein E.: $H^p$ spaces of several variables.Acta Math. 129 137-193 (1972). MR 0447953
Reference: [G] de Guzmán M.: Real Variable Methods in Fourier Analysis.Mathematics Studies 46, North Holland, Amsterdam, 1981. MR 0596037
Reference: [KR] Krasnosel'skii M., Rutickii J.: Convex Functions and Orlicz Spaces.Noordhoff, Groningen, 1961. MR 0126722
Reference: [MS1] Macías R., Segovia C.: Lipschitz functions on spaces of homogeneous type.Adv. in Math. 33 257-270 (1979). MR 0546295
Reference: [MS2] Macías R., Segovia C.: A decomposition into atoms of distributions on spaces of homogeneous type.Adv. in Math. 33 271-309 (1979). MR 0546296
Reference: [V] Viviani B.: An atomic decomposition of the predual of ${BMO} (\rho)$.Rev. Mat. Iberoamericana 3 3-4 401-425 (1987). Zbl 0665.46022, MR 0996824
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_5.pdf 256.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo