[1] Ahlberg J.H., Nilson E.N., Walsh J.L.: 
The Theory of Splines and Their Applications. Acad. Press 1967. 
MR 0239327 | 
Zbl 0158.15901[3] Fiedler M.: 
Speciální matice a jejich použití v numerické matematice. SNTL Praha, 1981. 
Zbl 0531.65008[4] Kammerer W.J., Reddien G.W., Varga L.S.: 
Quadratic interpolatory splines. Numer. Mathematik 22 (1974),  241-259. 
MR 0381235 | 
Zbl 0271.65006[5] Kobza J.: 
On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88,  Math. XXVI,  pp.169-185. 
MR 1033338 | 
Zbl 0693.65005[7] Kobza J.: Evaluation and mapping of parabolic interpolating spline. Knižnica algoritmov,  IX.diel, 51-58; JSMF Bratislava 1987.
[8] Kobza J.: 
Natural and smoothing quadratic spline. To appear in Aplikace matematiky. 
Zbl 0731.65006[9] Laurent P.J.: 
Approximation et Optimization. Hermann, Paris 1972. 
MR 0467080[10] Maess B., Maess G.: 
Interpolating quadratic splines with norm-minimal curvature. Rostock. Math. Kolloq. 26 (1984), 83-88. 
MR 0778184 | 
Zbl 0551.65003[11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature. Numerical Methods and Applications ’84, Sofia 1985,  75-81.
[13] McAllister D.F., Passow E., Roulier J.A.: 
Algorithms for computing shape preserving spline interpolation to data. Mathematics of Computations,  31 (1977), 717-725. 
MR 0448805[14] McAllister D.F., Roulier J.A.: 
An algorithm for computing a shape-preserving oscilatory quadratic spline. ACM Trans. Math. Software 7 (1981),  331-347,  384-386 (Alg.574). 
MR 0630439[16] Schumaker L.: 
On shape preserving quadratic spline interpolation. SIAM J. Num. Anal. 20 (1983),  854-864. 
MR 0708462 | 
Zbl 0521.65009[17] Стечкин C. B., Сыбботин Ю. H.: 
Сплейны в вычислительной математике. Hayкa, Mocква 1976. 
Zbl 1226.05083[18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.: 
Методы сплейн функций. Hayкa, Mocква 1980. 
Zbl 1229.60003[19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.: 
Сплейны в инженерной геометрии. Машиностроение, Mocква 1985. 
Zbl 1223.81144