[1] Ahlberg J.H., Nilson E.N., Walsh J.L.:
The Theory of Splines and Their Applications. Acad. Press 1967.
MR 0239327 |
Zbl 0158.15901
[3] Fiedler M.:
Speciální matice a jejich použití v numerické matematice. SNTL Praha, 1981.
Zbl 0531.65008
[4] Kammerer W.J., Reddien G.W., Varga L.S.:
Quadratic interpolatory splines. Numer. Mathematik 22 (1974), 241-259.
MR 0381235 |
Zbl 0271.65006
[5] Kobza J.:
On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185.
MR 1033338 |
Zbl 0693.65005
[7] Kobza J.: Evaluation and mapping of parabolic interpolating spline. Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987.
[8] Kobza J.:
Natural and smoothing quadratic spline. To appear in Aplikace matematiky.
Zbl 0731.65006
[9] Laurent P.J.:
Approximation et Optimization. Hermann, Paris 1972.
MR 0467080
[10] Maess B., Maess G.:
Interpolating quadratic splines with norm-minimal curvature. Rostock. Math. Kolloq. 26 (1984), 83-88.
MR 0778184 |
Zbl 0551.65003
[11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature. Numerical Methods and Applications ’84, Sofia 1985, 75-81.
[13] McAllister D.F., Passow E., Roulier J.A.:
Algorithms for computing shape preserving spline interpolation to data. Mathematics of Computations, 31 (1977), 717-725.
MR 0448805
[14] McAllister D.F., Roulier J.A.:
An algorithm for computing a shape-preserving oscilatory quadratic spline. ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574).
MR 0630439
[16] Schumaker L.:
On shape preserving quadratic spline interpolation. SIAM J. Num. Anal. 20 (1983), 854-864.
MR 0708462 |
Zbl 0521.65009
[17] Стечкин C. B., Сыбботин Ю. H.:
Сплейны в вычислительной математике. Hayкa, Mocква 1976.
Zbl 1226.05083
[18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.:
Методы сплейн функций. Hayкa, Mocква 1980.
Zbl 1229.60003
[19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.:
Сплейны в инженерной геометрии. Машиностроение, Mocква 1985.
Zbl 1223.81144