Title:
|
A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems (English) |
Author:
|
Gamba, Ivo |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
40 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
55-62 |
. |
Category:
|
math |
. |
MSC:
|
34B15 |
MSC:
|
47H10 |
idZBL:
|
Zbl 1040.34022 |
idMR:
|
MR1904685 |
. |
Date available:
|
2009-01-29T16:01:03Z |
Last updated:
|
2012-05-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120440 |
. |
Reference:
|
[1] Andres J.: A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray.Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. Zbl 0964.34030, MR 1664285 |
Reference:
|
[2] Andres J.: Multiple bounded solutions of differential inclusions: the Nielsen theory approach.J. Diff. Eqs. 155 (1999), 285-320. Zbl 0940.34008, MR 1698556 |
Reference:
|
[3] Andres J., Górniewicz L.: From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory.Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. Zbl 0958.34015, MR 1766189 |
Reference:
|
[4] Andres J., Górniewicz L., Jezierski J.: A generalized Nielsen number and multiplicity results for differential inclusion.Topol. Appl. 100 (2000), 143-209. MR 1733044 |
Reference:
|
[5] Borsuk K.: Theory of Retracts.PWN, Warsaw, 1967. Zbl 0153.52905, MR 0216473 |
Reference:
|
[6] Brown R. F.: On the Nielsen fixed point theorem for compact maps.Duke. Math. J., 1968, 699-708. MR 0250290 |
Reference:
|
[7] Brown R. F.: Topological identification of multiple solutions to parametrized nonlinear equations.Pacific J. Math. 131 (1988), 51-69. Zbl 0615.47042, MR 0917865 |
Reference:
|
[8] Brown R. F.: Nielsen fixed point theory and parametrized differential equations.In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. MR 0956478 |
Reference:
|
[9] Cecchi M., Furi M., Marini M.: About the solvability of ordinary differential equations with assymptotic boundary conditions.Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. MR 0805224 |
Reference:
|
[10] Fečkan M.: Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey.In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. MR 1766782 |
Reference:
|
[11] Granas A.: The Leray-Schauder index and the fixed point theory for arbitrary ANRs.Bull. Soc. Math. France 100 (1972), 209-228. Zbl 0236.55004, MR 0309102 |
Reference:
|
[12] Krasnosel’skij M. A.: The Operator of Translation along Trajectories of Differential Equations.Nauka, Moscow, 1966 (in Russian). |
. |