[1] Barrett, J.H.: 
Oscillation theory of ordinary linear differential equations. Advances in Math. 3 (1969), 415–509. 
MR 0257462 | 
Zbl 0213.10801 
[2] Bobrowski, D.: 
Asymptotic behaviour of functionally bounded solutions of the third order nonlinear differential equation. Fasc. Math. (Poznañ) 10 (1978), 67–76. 
MR 0492524 | 
Zbl 0432.34035 
[4] Erbe, L. H.: 
Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equation. Ann. Math. Pura Appl. 110 (1976), 373–393. 
DOI 10.1007/BF02418014 | 
MR 0427738 
[6] Greguš, M.: 
Third Order Linear Differential Equations. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1987. 
MR 0882545 
[7] Greguš, M.: 
On the asymptotic properties of solutions of nonlinear third order differential equation. Archivum Mathematicum (Brno) 26 (1990), 101–106. 
MR 1188268 
[8] Greguš, M.: 
On the oscillatory behaviour of certain third order nonlinear differential equation. Archivum Mathematicum (Brno) 28 (1992), 221–228. 
MR 1222290 
[9] Greguš, M. and Greguš Jr. M.: 
On the oscillatory properties of solutions of a certain nonlinear third order differential equation. J. Math. Analysis Applic. 181 (1994), 575–585. 
DOI 10.1006/jmaa.1994.1045 | 
MR 1264533 
[10] Greguš, M. and Greguš Jr., M.: Asymptotic properties of solution of a certain nonautonomous nonlinear differential equations of the third order. Bollettino U.M.I. (7) 7-A (1993), 341–350.
[12] Heidel J. W.: 
The existence of oscillatory solution for a nonlinear odd order nonlinear differential equation. Czechoslov. Math. J. 20 (1970), 93–97. 
MR 0257468 
[13] Ladde, G. S., Lakshmikantham, V. and Zhank, B. G.: 
Oscillation Theory of Differential Equations with Deviating Arguments. Marchel Dekker, Inc., New York, 1987. 
MR 1017244 
[14] Parhi, N. and Parhi, S.: 
Nonoscillation and asymptotic behaviour forced nonlinear third order differential equations. Bull. Inst. Math. Acad. Sinica 13 (1985), 367–384. 
MR 0866573 
[15] Parhi, N. and Parhi, S.: 
On the behaviour of solution of the differential equations $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t)y^\alpha = f(t)$. Annales Polon. Math. 47 (1986), 137–148. 
MR 0884931 
[16] Swanson, C.A.: 
Comparison and Oscillation Theory of Linear Differential Equations. New York and London, Acad. Press, 1968. 
MR 0463570 | 
Zbl 0191.09904