Previous |  Up |  Next

Article

Title: Nonoscillation and asymptotic behaviour for third order nonlinear differential equations (English)
Author: Tiryaki, Aydın
Author: Çelebi, A. Okay
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 677-685
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the equation \[y^{\prime \prime \prime } + q(t){y^{\prime }}^{\alpha } + p(t) h(y) =0,\] where $p,q$ are real valued continuous functions on $[0,\infty )$ such that $q(t) \ge 0$, $p(t) \ge 0$ and $h(y)$ is continuous in $(-\infty ,\infty )$ such that $h(y)y>0$ for $y \ne 0$. We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied. (English)
Keyword: Third order nonlinear differential equations
Keyword: nonoscillatory solutions
Keyword: asymptotic properties of solutions
MSC: 34C10
MSC: 34C15
MSC: 34D05
idZBL: Zbl 0955.34025
idMR: MR1658237
.
Date available: 2009-09-24T10:17:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127446
.
Reference: [1] Barrett, J.H.: Oscillation theory of ordinary linear differential equations.Advances in Math. 3 (1969), 415–509. Zbl 0213.10801, MR 0257462
Reference: [2] Bobrowski, D.: Asymptotic behaviour of functionally bounded solutions of the third order nonlinear differential equation.Fasc. Math. (Poznañ) 10 (1978), 67–76. Zbl 0432.34035, MR 0492524
Reference: [3] Cecchi, M. and Marini, M.: On the oscillatory behaviour of a third order nonlinear differential equation.Nonlinear Anal. 15 (1990), 141–153. MR 1065248, 10.1016/0362-546X(90)90118-Z
Reference: [4] Erbe, L. H.: Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equation.Ann. Math. Pura Appl. 110 (1976), 373–393. MR 0427738, 10.1007/BF02418014
Reference: [5] Erbe, L. H. and Rao, V. S. M.: Nonoscillation results for third order nonlinear differential equations.J. Math. Analysis Applic. 125 (1987), 471–482. MR 0896177, 10.1016/0022-247X(87)90102-8
Reference: [6] Greguš, M.: Third Order Linear Differential Equations.D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1987. MR 0882545
Reference: [7] Greguš, M.: On the asymptotic properties of solutions of nonlinear third order differential equation.Archivum Mathematicum (Brno) 26 (1990), 101–106. MR 1188268
Reference: [8] Greguš, M.: On the oscillatory behaviour of certain third order nonlinear differential equation.Archivum Mathematicum (Brno) 28 (1992), 221–228. MR 1222290
Reference: [9] Greguš, M. and Greguš Jr. M.: On the oscillatory properties of solutions of a certain nonlinear third order differential equation.J. Math. Analysis Applic. 181 (1994), 575–585. MR 1264533, 10.1006/jmaa.1994.1045
Reference: [10] Greguš, M. and Greguš Jr., M.: Asymptotic properties of solution of a certain nonautonomous nonlinear differential equations of the third order.Bollettino U.M.I. (7) 7-A (1993), 341–350.
Reference: [11] Heidel, J. W.: Qualitative behaviour of solution of a third order nonlinear differential equation.Pacific J. Math. 27 (1968), 507–526. MR 0240389, 10.2140/pjm.1968.27.507
Reference: [12] Heidel J. W.: The existence of oscillatory solution for a nonlinear odd order nonlinear differential equation.Czechoslov. Math. J. 20 (1970), 93–97. MR 0257468
Reference: [13] Ladde, G. S., Lakshmikantham, V. and Zhank, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments.Marchel Dekker, Inc., New York, 1987. MR 1017244
Reference: [14] Parhi, N. and Parhi, S.: Nonoscillation and asymptotic behaviour forced nonlinear third order differential equations.Bull. Inst. Math. Acad. Sinica 13 (1985), 367–384. MR 0866573
Reference: [15] Parhi, N. and Parhi, S.: On the behaviour of solution of the differential equations $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t)y^\alpha = f(t)$.Annales Polon. Math. 47 (1986), 137–148. MR 0884931
Reference: [16] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations.New York and London, Acad. Press, 1968. Zbl 0191.09904, MR 0463570
Reference: [17] Wintner, A.: On the nonexistence of conjugate points.Amer. J. Math. 73 (1951), 368–380. Zbl 0043.08703, MR 0042005, 10.2307/2372182
.

Files

Files Size Format View
CzechMathJ_48-1998-4_6.pdf 314.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo