Previous |  Up |  Next

Article

Summary:
Some new criteria for the oscillation of difference equations of the form \[ \Delta ^2 x_n - p_n \Delta x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0 \] and \[ \Delta ^i x_n + p_n \Delta ^{i-1} x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0, \ i = 2,3, \] are established.
References:
[1] S. R. Grace: On the oscillatory and asymptotic behavior of damped functional differential equations. Math. Japon. 36 (1991), 229–237. MR 1095734 | Zbl 0732.34056
[2] S. R. Grace: Oscillatory and asymptotic behavior of damped functional differential equations. Math. Nachr. 142 (1989), 279–305. MR 1017387 | Zbl 0698.34060
[3] S. R. Grace: Oscillation theorems for damped functional differential equations. Funkcial. Ekvac. 35 (1992), 261–278. MR 1189896 | Zbl 0758.34053
[4] S. R. Grace, B. S. Lalli: Oscillation theorems for second order delay and neutral difference equations. Utilitas Math. 45 (1994), 197–211. MR 1284030
[5] S. R. Grace, B. S. Lalli: Oscillation theorems for forced neutral difference equations. J.  Math. Anal. Appl. 187 (1994), 91–106. DOI 10.1006/jmaa.1994.1346 | MR 1296607
[6] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, Oxford, 1991. MR 1168471
[7] J. W. Hooker, W. T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91 (1983), 9–29. DOI 10.1016/0022-247X(83)90088-4 | MR 0688528
[8] G. Ladas, C. Qian: Comparison results and linearized oscillations for higher order difference equations. Internat. J. Math. & Math. Sci. 15 (1992), 129–142. DOI 10.1155/S0161171292000152 | MR 1143937
[9] B. S. Lalli, S. R. Grace: Oscillation theorems for second order neutral difference equations. Appl. Math. Comput. 62 (1994), 47–60. DOI 10.1016/0096-3003(94)90132-5 | MR 1274100
[10] W. T. Patula: Growth and oscillation properties of second order linear difference equations. SIAM J. Math. Anal. 10 (1979), 55–61. DOI 10.1137/0510006 | MR 0516749 | Zbl 0397.39001
[11] Ch. G. Philos: On oscillation of some difference equations. Funkcial. Ekvac. 34 (1991), 157–172. MR 1116887
[12] F. Weil: Existence theorem for the difference equation $y_{n+1} - 2y_n + y_{n-1} = h^2 f(y_n)$. Internat. J. Math. & Math. Sci. 3 (1990), 69–77. MR 0576630
Partner of
EuDML logo