Article
Summary:
Some new criteria for the oscillation of difference equations of the form \[ \Delta ^2 x_n - p_n \Delta x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0 \] and \[ \Delta ^i x_n + p_n \Delta ^{i-1} x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0, \ i = 2,3, \] are established.
References:
[1] S. R. Grace:
On the oscillatory and asymptotic behavior of damped functional differential equations. Math. Japon. 36 (1991), 229–237.
MR 1095734 |
Zbl 0732.34056
[2] S. R. Grace:
Oscillatory and asymptotic behavior of damped functional differential equations. Math. Nachr. 142 (1989), 279–305.
MR 1017387 |
Zbl 0698.34060
[3] S. R. Grace:
Oscillation theorems for damped functional differential equations. Funkcial. Ekvac. 35 (1992), 261–278.
MR 1189896 |
Zbl 0758.34053
[4] S. R. Grace, B. S. Lalli:
Oscillation theorems for second order delay and neutral difference equations. Utilitas Math. 45 (1994), 197–211.
MR 1284030
[6] I. Györi, G. Ladas:
Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, Oxford, 1991.
MR 1168471
[8] G. Ladas, C. Qian:
Comparison results and linearized oscillations for higher order difference equations. Internat. J. Math. & Math. Sci. 15 (1992), 129–142.
DOI 10.1155/S0161171292000152 |
MR 1143937
[11] Ch. G. Philos:
On oscillation of some difference equations. Funkcial. Ekvac. 34 (1991), 157–172.
MR 1116887
[12] F. Weil:
Existence theorem for the difference equation $y_{n+1} - 2y_n + y_{n-1} = h^2 f(y_n)$. Internat. J. Math. & Math. Sci. 3 (1990), 69–77.
MR 0576630