Previous |  Up |  Next

Article

Title: Oscillation of certain difference equations (English)
Author: Grace, S. R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 347-358
Summary lang: English
.
Category: math
.
Summary: Some new criteria for the oscillation of difference equations of the form \[ \Delta ^2 x_n - p_n \Delta x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0 \] and \[ \Delta ^i x_n + p_n \Delta ^{i-1} x_{n-h} + q_n |x_{g_n}|^c \mathop {\mathrm sgn}x_{g_n} = 0, \ i = 2,3, \] are established. (English)
MSC: 39A10
MSC: 39A11
idZBL: Zbl 1051.39005
idMR: MR1761392
.
Date available: 2009-09-24T10:33:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127574
.
Reference: [1] S. R. Grace: On the oscillatory and asymptotic behavior of damped functional differential equations.Math. Japon. 36 (1991), 229–237. Zbl 0732.34056, MR 1095734
Reference: [2] S. R. Grace: Oscillatory and asymptotic behavior of damped functional differential equations.Math. Nachr. 142 (1989), 279–305. Zbl 0698.34060, MR 1017387
Reference: [3] S. R. Grace: Oscillation theorems for damped functional differential equations.Funkcial. Ekvac. 35 (1992), 261–278. Zbl 0758.34053, MR 1189896
Reference: [4] S. R. Grace, B. S. Lalli: Oscillation theorems for second order delay and neutral difference equations.Utilitas Math. 45 (1994), 197–211. MR 1284030
Reference: [5] S. R. Grace, B. S. Lalli: Oscillation theorems for forced neutral difference equations.J.  Math. Anal. Appl. 187 (1994), 91–106. MR 1296607, 10.1006/jmaa.1994.1346
Reference: [6] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations with Applications.Oxford University Press, Oxford, 1991. MR 1168471
Reference: [7] J. W. Hooker, W. T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior.J. Math. Anal. Appl. 91 (1983), 9–29. MR 0688528, 10.1016/0022-247X(83)90088-4
Reference: [8] G. Ladas, C. Qian: Comparison results and linearized oscillations for higher order difference equations.Internat. J. Math. & Math. Sci. 15 (1992), 129–142. MR 1143937, 10.1155/S0161171292000152
Reference: [9] B. S. Lalli, S. R. Grace: Oscillation theorems for second order neutral difference equations.Appl. Math. Comput. 62 (1994), 47–60. MR 1274100, 10.1016/0096-3003(94)90132-5
Reference: [10] W. T. Patula: Growth and oscillation properties of second order linear difference equations.SIAM J. Math. Anal. 10 (1979), 55–61. Zbl 0397.39001, MR 0516749, 10.1137/0510006
Reference: [11] Ch. G. Philos: On oscillation of some difference equations.Funkcial. Ekvac. 34 (1991), 157–172. MR 1116887
Reference: [12] F. Weil: Existence theorem for the difference equation $y_{n+1} - 2y_n + y_{n-1} = h^2 f(y_n)$.Internat. J. Math. & Math. Sci. 3 (1990), 69–77. MR 0576630
.

Files

Files Size Format View
CzechMathJ_50-2000-2_10.pdf 326.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo