Previous |  Up |  Next

Article

Title: On the best ranges for $A^+_p$ and $RH_r^+$ (English)
Author: Riveros, M. S.
Author: Torre, A. de la
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 285-301
Summary lang: English
.
Category: math
.
Summary: In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1<p<\infty $ and $RH_r^+$, $1<r<\infty $ are solved using factorization. (English)
Keyword: one-sided weights
Keyword: one-sided reverse Hölder
Keyword: factorization
MSC: 42B25
idZBL: Zbl 0980.42015
idMR: MR1844311
.
Date available: 2009-09-24T10:42:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127648
.
Reference: [1] H. Aimar, L. Forzani and F. J. Martín-Reyes: On weighted inequalities for one-sided singular integrals.Proc. Amer. Math. Soc. 125 (1997), 2057–2064. MR 1376747, 10.1090/S0002-9939-97-03787-8
Reference: [2] D. Cruz-Uribe and C. J. Neugebauer: The structure of reverse Hölder classes.Trans. Amer. Math. Soc. 347 (1995), 2941–2960. MR 1308005
Reference: [3] D. Cruz-Uribe, C. J. Neugebauer and V. Olesen: The one-sided minimal operator and the one-sided reverse Hölder inequality.Stud. Math 116 (1995), 255–270. MR 1360706, 10.4064/sm-116-3-255-270
Reference: [4] P. Guan and E. Sawyer: Regularity estimates for oblique derivative problem.Anal. of Mathematics, Second Series 157 (1) (1993), 1–70. MR 1200076, 10.2307/2946618
Reference: [5] F. J. Martín-Reyes: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Proc. Amer. Math. Soc. 117, 691–698. MR 1111435, 10.1090/S0002-9939-1993-1111435-2
Reference: [6] F. J. Martín-Reyes, P. Ortega and A. de la Torre: Weighted inequalities for one-sided maximal functions.Trans. Amer. Math. Soc. 319 (2) (1990), 517–534. MR 0986694, 10.1090/S0002-9947-1990-0986694-9
Reference: [7] F. J. Martín-Reyes, L. Pick and A. de la Torre: $A^+_\infty $ condition.Canad. J. Math. 45 (6) (1993), 1231–1244. MR 1247544
Reference: [8] C. J. Neugebauer: The precise range of indices for the $RH_r$ and $A_p$ weight classes.Preprint (), .
Reference: [9] E. Sawyer: Weighted inequalities for the one-sided Hardy-Littlewood maximal function.Trans. Amer. Math. Soc. 297 (1986), 53–61. MR 0849466, 10.1090/S0002-9947-1986-0849466-0
.

Files

Files Size Format View
CzechMathJ_51-2001-2_6.pdf 405.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo