Previous |  Up |  Next

Article

Keywords:
one-dimensional stochastic equations; time-dependent diffusion coefficients; Brownian motion; existence of solutions; uniqueness in law; continuous local martingales; representation property
Summary:
We consider the stochastic equation \[ X_t=x_0+\int _0^t b(u,X_{u})\mathrm{d}B_u,\quad t\ge 0, \] where $B$ is a one-dimensional Brownian motion, $x_0\in \mathbb{R}$ is the initial value, and $b\:[0,\infty )\times \mathbb{R}\rightarrow \mathbb{R}$ is a time-dependent diffusion coefficient. While the existence of solutions is well-studied for only measurable diffusion coefficients $b$, beyond the homogeneous case there is no general result on the uniqueness in law of the solution. The purpose of the present note is to give conditions on $b$ ensuring the existence as well as the uniqueness in law of the solution.
References:
[1] S. Assing and T. Senf: On stochastic differential equations without drift. Stochastics Stochastics Rep. 36 (1991), 21–39. DOI 10.1080/17442509108833707 | MR 1117203
[2] H. J. Engelbert: On the theorem of T. Yamada and S. Watanabe. Stochastics Stochastics Rep. 36 (1991), 205–216. DOI 10.1080/17442509108833718 | MR 1128494 | Zbl 0739.60046
[3] H. J. Engelbert and J. Hess: Stochastic integrals of continuous local martingales, II. Math. Nachr. 100 (1981), 249–269. DOI 10.1002/mana.19811000115 | MR 0632631
[4] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes. Stochastic Processes and Related Topics, Proceedings of the 12th Winter School on Stochastic Processes, Siegmundsburg (Germany), February 27–March 4, 2000, R. Buckdahn, H.-J. Engelbert and M. Yor (eds.), Gordon and Breach Science Publishers, 2001, to appear. MR 1987311
[5] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes. Jenaer Schriften zur Mathematik und Informatik, Preprint Mat/Inf/00/14 (24.01.2000). MR 1987311
[6] H. J. Engelbert and W. Schmidt: On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations. Stochastic differential systems (Visegrad, 1980). Lecture Notes in Control and Information Sci. Vol. 36, Springer, Berlin-New York, 1981, pp. 47–55. MR 0653645
[7] H. J. Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift. Stochastic differential systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. MR 0798317
[8] H. J. Engelbert and W. Schmidt: On solutions of one-dimensional stochastic differential equations without drift. Z. Wahrsch. Verw. Gebiete 68 (1985), 287–314. DOI 10.1007/BF00532642 | MR 0771468
[9] H. J. Engelbert and W. Schmidt: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III. Math. Nachr. 151 (1991), 149–197. DOI 10.1002/mana.19911510111 | MR 1121203
[10] A. F. Fillippov: Differential Equations with Discontinuous Right Hand Sides. Nauka, Moscow, 1985. (Russian)
[11] J. Jacod: Calcul stochastique et problèmes de martingales. Lecture Notes in Math. Vol. 714, Springer, Berlin, 1979. MR 0542115 | Zbl 0414.60053
[12] P. Raupach: On driftless one-dimensional SDEs with time-dependent diffusion coefficients. Stochastics Stochastics Rep. 67 (1999), 207–230. DOI 10.1080/17442509908834211 | MR 1729476 | Zbl 0946.60061
[13] D. Revuz, M. Yor: Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin, 1994. MR 1303781
[14] T. Senf: Stochastische Differentialgleichungen mit inhomogenen Koeffizienten. Dissertation, Friedrich-Schiller-Universität Jena. (1992).
[15] T. Senf: On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients. Stochastics Stochastics Rep. 43 (1993), 199–220. MR 1277164 | Zbl 0786.60077
[16] T. Yamada and S.  Watanabe: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971), 155–167. MR 0278420
Partner of
EuDML logo