Title:
|
A note on one-dimensional stochastic equations (English) |
Author:
|
Engelbert, Hans-Jürgen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
701-712 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the stochastic equation \[ X_t=x_0+\int _0^t b(u,X_{u})\mathrm{d}B_u,\quad t\ge 0, \] where $B$ is a one-dimensional Brownian motion, $x_0\in \mathbb{R}$ is the initial value, and $b\:[0,\infty )\times \mathbb{R}\rightarrow \mathbb{R}$ is a time-dependent diffusion coefficient. While the existence of solutions is well-studied for only measurable diffusion coefficients $b$, beyond the homogeneous case there is no general result on the uniqueness in law of the solution. The purpose of the present note is to give conditions on $b$ ensuring the existence as well as the uniqueness in law of the solution. (English) |
Keyword:
|
one-dimensional stochastic equations |
Keyword:
|
time-dependent diffusion coefficients |
Keyword:
|
Brownian motion |
Keyword:
|
existence of solutions |
Keyword:
|
uniqueness in law |
Keyword:
|
continuous local martingales |
Keyword:
|
representation property |
MSC:
|
60G44 |
MSC:
|
60H10 |
MSC:
|
60J60 |
MSC:
|
60J65 |
idZBL:
|
Zbl 1001.60059 |
idMR:
|
MR1864037 |
. |
Date available:
|
2009-09-24T10:46:37Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127681 |
. |
Reference:
|
[1] S. Assing and T. Senf: On stochastic differential equations without drift.Stochastics Stochastics Rep. 36 (1991), 21–39. MR 1117203, 10.1080/17442509108833707 |
Reference:
|
[2] H. J. Engelbert: On the theorem of T. Yamada and S. Watanabe.Stochastics Stochastics Rep. 36 (1991), 205–216. Zbl 0739.60046, MR 1128494, 10.1080/17442509108833718 |
Reference:
|
[3] H. J. Engelbert and J. Hess: Stochastic integrals of continuous local martingales, II.Math. Nachr. 100 (1981), 249–269. MR 0632631, 10.1002/mana.19811000115 |
Reference:
|
[4] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes.Stochastic Processes and Related Topics, Proceedings of the 12th Winter School on Stochastic Processes, Siegmundsburg (Germany), February 27–March 4, 2000, R. Buckdahn, H.-J. Engelbert and M. Yor (eds.), Gordon and Breach Science Publishers, 2001, to appear. MR 1987311 |
Reference:
|
[5] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes.Jenaer Schriften zur Mathematik und Informatik, Preprint Mat/Inf/00/14 (24.01.2000). MR 1987311 |
Reference:
|
[6] H. J. Engelbert and W. Schmidt: On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations.Stochastic differential systems (Visegrad, 1980). Lecture Notes in Control and Information Sci. Vol. 36, Springer, Berlin-New York, 1981, pp. 47–55. MR 0653645 |
Reference:
|
[7] H. J. Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift.Stochastic differential systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. MR 0798317 |
Reference:
|
[8] H. J. Engelbert and W. Schmidt: On solutions of one-dimensional stochastic differential equations without drift.Z. Wahrsch. Verw. Gebiete 68 (1985), 287–314. MR 0771468, 10.1007/BF00532642 |
Reference:
|
[9] H. J. Engelbert and W. Schmidt: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III.Math. Nachr. 151 (1991), 149–197. MR 1121203, 10.1002/mana.19911510111 |
Reference:
|
[10] A. F. Fillippov: Differential Equations with Discontinuous Right Hand Sides.Nauka, Moscow, 1985. (Russian) |
Reference:
|
[11] J. Jacod: Calcul stochastique et problèmes de martingales.Lecture Notes in Math. Vol. 714, Springer, Berlin, 1979. Zbl 0414.60053, MR 0542115 |
Reference:
|
[12] P. Raupach: On driftless one-dimensional SDEs with time-dependent diffusion coefficients.Stochastics Stochastics Rep. 67 (1999), 207–230. Zbl 0946.60061, MR 1729476, 10.1080/17442509908834211 |
Reference:
|
[13] D. Revuz, M. Yor: Continuous Martingales and Brownian Motion.Springer-Verlag, Berlin, 1994. MR 1303781 |
Reference:
|
[14] T. Senf: Stochastische Differentialgleichungen mit inhomogenen Koeffizienten. Dissertation, Friedrich-Schiller-Universität Jena.(1992). |
Reference:
|
[15] T. Senf: On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients.Stochastics Stochastics Rep. 43 (1993), 199–220. Zbl 0786.60077, MR 1277164 |
Reference:
|
[16] T. Yamada and S. Watanabe: On the uniqueness of solutions of stochastic differential equations.J. Math. Kyoto Univ. 11 (1971), 155–167. MR 0278420, 10.1215/kjm/1250523691 |
. |