Previous |  Up |  Next

Article

Title: A note on one-dimensional stochastic equations (English)
Author: Engelbert, Hans-Jürgen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 701-712
Summary lang: English
.
Category: math
.
Summary: We consider the stochastic equation \[ X_t=x_0+\int _0^t b(u,X_{u})\mathrm{d}B_u,\quad t\ge 0, \] where $B$ is a one-dimensional Brownian motion, $x_0\in \mathbb{R}$ is the initial value, and $b\:[0,\infty )\times \mathbb{R}\rightarrow \mathbb{R}$ is a time-dependent diffusion coefficient. While the existence of solutions is well-studied for only measurable diffusion coefficients $b$, beyond the homogeneous case there is no general result on the uniqueness in law of the solution. The purpose of the present note is to give conditions on $b$ ensuring the existence as well as the uniqueness in law of the solution. (English)
Keyword: one-dimensional stochastic equations
Keyword: time-dependent diffusion coefficients
Keyword: Brownian motion
Keyword: existence of solutions
Keyword: uniqueness in law
Keyword: continuous local martingales
Keyword: representation property
MSC: 60G44
MSC: 60H10
MSC: 60J60
MSC: 60J65
idZBL: Zbl 1001.60059
idMR: MR1864037
.
Date available: 2009-09-24T10:46:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127681
.
Reference: [1] S. Assing and T. Senf: On stochastic differential equations without drift.Stochastics Stochastics Rep. 36 (1991), 21–39. MR 1117203, 10.1080/17442509108833707
Reference: [2] H. J. Engelbert: On the theorem of T. Yamada and S. Watanabe.Stochastics Stochastics Rep. 36 (1991), 205–216. Zbl 0739.60046, MR 1128494, 10.1080/17442509108833718
Reference: [3] H. J. Engelbert and J. Hess: Stochastic integrals of continuous local martingales, II.Math. Nachr. 100 (1981), 249–269. MR 0632631, 10.1002/mana.19811000115
Reference: [4] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes.Stochastic Processes and Related Topics, Proceedings of the 12th Winter School on Stochastic Processes, Siegmundsburg (Germany), February 27–March 4, 2000, R. Buckdahn, H.-J. Engelbert and M. Yor (eds.), Gordon and Breach Science Publishers, 2001, to appear. MR 1987311
Reference: [5] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes.Jenaer Schriften zur Mathematik und Informatik, Preprint Mat/Inf/00/14 (24.01.2000). MR 1987311
Reference: [6] H. J. Engelbert and W. Schmidt: On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations.Stochastic differential systems (Visegrad, 1980). Lecture Notes in Control and Information Sci. Vol. 36, Springer, Berlin-New York, 1981, pp. 47–55. MR 0653645
Reference: [7] H. J. Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift.Stochastic differential systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. MR 0798317
Reference: [8] H. J. Engelbert and W. Schmidt: On solutions of one-dimensional stochastic differential equations without drift.Z. Wahrsch. Verw. Gebiete 68 (1985), 287–314. MR 0771468, 10.1007/BF00532642
Reference: [9] H. J. Engelbert and W. Schmidt: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III.Math. Nachr. 151 (1991), 149–197. MR 1121203, 10.1002/mana.19911510111
Reference: [10] A. F. Fillippov: Differential Equations with Discontinuous Right Hand Sides.Nauka, Moscow, 1985. (Russian)
Reference: [11] J. Jacod: Calcul stochastique et problèmes de martingales.Lecture Notes in Math. Vol. 714, Springer, Berlin, 1979. Zbl 0414.60053, MR 0542115
Reference: [12] P. Raupach: On driftless one-dimensional SDEs with time-dependent diffusion coefficients.Stochastics Stochastics Rep. 67 (1999), 207–230. Zbl 0946.60061, MR 1729476, 10.1080/17442509908834211
Reference: [13] D. Revuz, M. Yor: Continuous Martingales and Brownian Motion.Springer-Verlag, Berlin, 1994. MR 1303781
Reference: [14] T. Senf: Stochastische Differentialgleichungen mit inhomogenen Koeffizienten. Dissertation, Friedrich-Schiller-Universität Jena.(1992).
Reference: [15] T. Senf: On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients.Stochastics Stochastics Rep. 43 (1993), 199–220. Zbl 0786.60077, MR 1277164
Reference: [16] T. Yamada and S.  Watanabe: On the uniqueness of solutions of stochastic differential equations.J. Math. Kyoto Univ. 11 (1971), 155–167. MR 0278420, 10.1215/kjm/1250523691
.

Files

Files Size Format View
CzechMathJ_51-2001-4_4.pdf 377.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo