Previous |  Up |  Next

Article

Keywords:
boolean; polyadic; function space; Corson; compact; $C_p (X)$; Eberlein; tightness
Summary:
We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
References:
[1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line. Fund. Math. 107 (1980), 135–143. MR 0584666
[2] A. V.  Arkhangel’skii: Topological Function Spaces. Kluwer Academic Publishers, 1992. MR 1144519
[3] M.  Bell: Generalized dyadic spaces. Fund. Math. CXXV (1985), 47–58. MR 0813988 | Zbl 0589.54019
[4] M. Bell: Tightness in polyadic spaces. Topology Proc. 25 (2000), 63–74. MR 1875583 | Zbl 1009.54031
[5] M. Bell: Polyadic spaces of countable tightness. Topology and its Applications 123 (2002), 401–407. DOI 10.1016/S0166-8641(01)00206-1 | MR 1924040 | Zbl 1008.54015
[6] Y.  Benyamini, M.  E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces. Pacific J. Math. 70 (1977), 309–324. DOI 10.2140/pjm.1977.70.309 | MR 0625889
[7] H.  Corson: Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785–796. DOI 10.2307/2372929 | MR 0107222 | Zbl 0095.37302
[8] J. Gerlits: On a generalization of dyadicity. Studia Sci. Math. Hungar. 13 (1978), 1–17. MR 0630375 | Zbl 0475.54012
[9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products. Dokl. Acad. Nauk SSSR 237 (1977). MR 0461410
[10] O.  Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolin. 40 (1999), 777–783. MR 1756552 | Zbl 1009.54017
[11] O.  Kalenda: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), 1–85. MR 1792980 | Zbl 0983.46021
[12] A.  Kombarov: On the normality of $\Sigma _m$-products. Dokl. Akad. Nauk SSSR 211 (1973). MR 0328861
[13] A.  Kombarov and V.  Malyhin: On $\Sigma $-products. Dokl. Akad. Nauk SSSR 213 (1973). MR 0339073
[14] S.  Mardesic: On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4 (1960), 278–291. MR 0116306 | Zbl 0094.16902
[15] S.  Mrowka: Mazur theorem and $m$-adic spaces. Bull. Acad. Pol. Sci. XVIII (1970), 299–305. MR 0264613 | Zbl 0194.54302
[16] N.  Noble: Products with closed projections. II. Trans. Amer. Math. Soc. 160 (1971), 169–183. DOI 10.1090/S0002-9947-1971-0283749-X | MR 0283749 | Zbl 0233.54004
[17] G.  Plebanek: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257–270. DOI 10.1016/0166-8641(95)00006-3 | MR 1357868
[18] R.  Pol: On weak and pointwise topology in function spaces. University of Warsaw preprint No. 4184, Warsaw, 1984.
[19] M.  Talagrand: Espaces de Banach faiblement $K$-analytiques. Ann. Math. 110 (1979), 407–438. DOI 10.2307/1971232 | MR 0554378
Partner of
EuDML logo