Previous |  Up |  Next


primes in arithmetic progressions; squarefree integers; Artin’s constant
In this paper we establish the distribution of prime numbers in a given arithmetic progression $p \equiv l \hspace{4.44443pt}(\@mod \; k)$ for which $ap + b$ is squarefree.
[1] Tom M. Apostol: Introduction to Analytic Number Theory. Springer-Verlag, 1976. MR 0434929
[2] William  Ellison and Fern Ellison: Prime Numbers. John Wiley & Sons, 1985. MR 0814687
[3] Ronald L. Graham, Donald E.  Knuth and Oren Patashnik: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, second edition, 1994. MR 1397498
[4] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Oxford at the Clarendon Press, fourth edition, 1960.
[5] Edmund Landau and Paul T.  Bateman: Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea, New York, second edition, 1974.
[6] N. S. Mendelsohn: Private communication to Jacek Fabrykowski. 1989.
[7] L. Mirsky: The number of representations of an integer as the sum of a prime and a $k$-free integer. Amer. Math. Monthly 56 (1949), 17–19. DOI 10.2307/2305811 | MR 0028335 | Zbl 0033.16203
[8] Karl Prachar: Über die kleinste quadratfrei Zahl einer arithmetischen Reihe. Monatsh. Math. 3 (1958), 173–176. MR 0092806
[9] John W. Wrench, Jr.: Evaluation of Artin’s constant and the twin-prime constant. Math. Comp. 15 (1961), 396–398. MR 0124305
Partner of
EuDML logo