Previous |  Up |  Next


Title: Generalized cardinal properties of lattices and lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 1035-1053
Summary lang: English
Category: math
Summary: We denote by $K$ the class of all cardinals; put $K^{\prime }= K \cup \lbrace \infty \rbrace $. Let $\mathcal C$ be a class of algebraic systems. A generalized cardinal property $f$ on $\mathcal C$ is defined to be a rule which assings to each $A \in \mathcal C$ an element $f A$ of $K^{\prime }$ such that, whenever $A_1, A_2 \in \mathcal C$ and $A_1 \simeq A_2$, then $f A_1 =f A_2$. In this paper we are interested mainly in the cases when (i) $\mathcal C$ is the class of all bounded lattices $B$ having more than one element, or (ii) $\mathcal C$ is a class of lattice ordered groups. (English)
Keyword: bounded lattice
Keyword: lattice ordered group
Keyword: generalized cardinal property
Keyword: homogeneity
MSC: 06B05
MSC: 06F15
idZBL: Zbl 1080.06029
idMR: MR2100012
Date available: 2009-09-24T11:19:53Z
Last updated: 2016-04-07
Stable URL:
Reference: [1] G.  Birkhoff: Lattice Theory.Third Edition, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] P.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [3] E. K.  van Douwen: Cardinal functions on compact $F$-spaces and weakly complete Boolean algebras.Fundamenta Math. 113 (1982), 235–256.
Reference: [4] E. K.  van Douwen: Cardinal functions on Boolean spaces.In: Handbook of Boolean Algebras, J. D.  Monk and R.  Bonnet (eds.), North Holland, Amsterdam, 1989, pp. 417–467. MR 0991599
Reference: [5] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen.Časopis pěst. mat. 84 (1959), 53–63. MR 0104740
Reference: [6] J.  Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528
Reference: [7] J.  Jakubík: Radical classes of generalized Boolean algebras.Czechoslovak Math.  J. 48 (1998), 253–268. MR 1624315, 10.1023/A:1022885303504
Reference: [8] J. D.  Monk: Cardinal functions on Boolean algebras.In: Orders, Description and Roles, M. Pouzet and D. Richard (eds.), North Holland, Amsterdam, 1984, pp. 9–37. Zbl 0557.06009, MR 0779843
Reference: [9] R. S.  Pierce: Some questions about complete Boolean algebras.Proc. Symp. Pure Math., Vol.  II, Lattice Theory, Amer. Math. Soc., Providence, 1961. Zbl 0101.27104, MR 0138570
Reference: [10] F.  Šik: Über subdirekte Summen geordneter Gruppen.Czechoslovak Math.  J. 10 (1960), 400–424. MR 0123626


Files Size Format View
CzechMathJ_54-2004-4_17.pdf 339.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo