Title:
|
A nontrivial solution for Neumann noncoercive hemivariational inequalities (English) |
Author:
|
Halidias, Nikolaos |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
1065-1075 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals. (English) |
Keyword:
|
noncoercive hemivariational inequality |
Keyword:
|
critical point theory |
Keyword:
|
nontrivial solution |
Keyword:
|
locally Lipschitz functionals |
MSC:
|
35J20 |
MSC:
|
35J85 |
MSC:
|
49J40 |
idZBL:
|
Zbl 1080.35013 |
idMR:
|
MR2100014 |
. |
Date available:
|
2009-09-24T11:20:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127951 |
. |
Reference:
|
[1] K. C. Chang: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. Zbl 0487.49027, MR 0614246, 10.1016/0022-247X(81)90095-0 |
Reference:
|
[2] F. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590 |
Reference:
|
[3] D. G. Costa and J. V. Goncalves: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. Appl. 153 (1990), 470–485. MR 1080660, 10.1016/0022-247X(90)90226-6 |
Reference:
|
[4] D. G. De Figueiredo: Lectures on the Ekeland Variational Principle with Applications and Detours.Tata Institute of Fundamental Research, Springer, Bombay, 1989. Zbl 0688.49011, MR 1019559 |
Reference:
|
[5] L. Gasinski and N. S. Papageorgiou: Nonlinear hemivariational inequalities at resonance.J. Math. Anal. Appl. 244 (2000), 200–213. MR 1746797, 10.1006/jmaa.1999.6701 |
Reference:
|
[6] D. Goeleven, D. Motreanu and P. D. Panagiotopoulos: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities.Nonlinear Anal. 29 (1997), 9–26. MR 1447566, 10.1016/S0362-546X(96)00039-9 |
Reference:
|
[7] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775 |
Reference:
|
[8] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926 |
Reference:
|
[9] N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems.J. Math. Soc. Japan 27 (1975), 121–149. Zbl 0292.35034, MR 0372419, 10.2969/jmsj/02710121 |
Reference:
|
[10] P. D. Panagiotopoulos: Hemivariational Inequalities and Their Applications.Birkhäuser-Verlag, Boston, 1998. MR 0957088 |
Reference:
|
[11] P. D. Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer-Verlag, Berlin, 1993. Zbl 0826.73002, MR 1385670 |
. |