Previous |  Up |  Next

Article

Keywords:
generalized Boolean algebra; elementary Carathéodory functions; Specker lattice ordered group; $(\alpha, \beta)$-distributivity; complete distributivity
Summary:
In this paper we deal with the vector lattice $C(B)$ of all elementary Carathéodory functions corresponding to a generalized Boolean algebra $B$.
References:
[1] G.  Birkhoff: Lattice Theory, Third Edition. Providence, 1967. MR 0227053
[2] P.  Conrad: Lattice Ordered Groups. Tulane University, Tulane, 1970. Zbl 0258.06011
[3] P.  Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. DOI 10.1090/S0002-9947-1992-1031238-0 | MR 1031238
[4] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. DOI 10.1023/A:1006075129584 | MR 1644504
[5] P. F.  Conrad and M. R.  Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math.  J (to appear). MR 1844319
[6] P. F.  Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups. Alg. Universalis 29 (1992), 521–545. DOI 10.1007/BF01190779 | MR 1201177
[7] C.  Gofman: Remarks on lattice ordered groups and vector lattices. I.  Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. MR 0097331
[8] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen. Čas. pěst. mat. 83 (1959), 53–63. MR 0104740
[9] J.  Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. MR 0302528
[10] J.  Jakubík: Distributivity in lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 108–125. MR 0325487
[11] J.  Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math.  J. 52 (2002), 469–482. DOI 10.1023/A:1021711326115 | MR 1923254
[12] R.  Sikorski: Boolean Algebras. Second Edition, Springer-Verlag, Berlin, 1964. MR 0177920 | Zbl 0123.01303
[13] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 114 (1962), 334–346. DOI 10.1090/S0002-9947-1962-0138569-8 | MR 0138569 | Zbl 0105.09401
Partner of
EuDML logo