Article
Keywords:
prime submodules; multiplication modules; distributive lattices; spectral spaces
Summary:
We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$.
References:
[1] R. Balbes and P. Dwinger:
Distributive Lattices. Univ. of Missouri Press, Missouri, 1974.
MR 0373985
[5] C. P. Lu:
The Zariski topology on the prime spectrum of a module. Houston J. Math. 25 (1999), 417–432.
MR 1730888 |
Zbl 0979.13005
[6] R. L. McCasland, M. E. Moore and P. F. Smith:
Generators for the semimodule of varieties of a free module. Rocky Mountain J. Math. 29 (1999), 1467–1482.
DOI 10.1216/rmjm/1181070416 |
MR 1743380
[8] P. F. Smith:
Some remarks on multiplication modules. Arch. Math. 50 (1998), 223–235.
MR 0933916