Previous |  Up |  Next

Article

Title: On finitely generated multiplication modules (English)
Author: Nekooei, R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 503-510
Summary lang: English
.
Category: math
.
Summary: We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$. (English)
Keyword: prime submodules
Keyword: multiplication modules
Keyword: distributive lattices
Keyword: spectral spaces
MSC: 06B10
MSC: 13A15
MSC: 13C13
MSC: 13C99
idZBL: Zbl 1084.13500
idMR: MR2137157
.
Date available: 2009-09-24T11:25:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127997
.
Reference: [1] R.  Balbes and P.  Dwinger: Distributive Lattices.Univ. of Missouri Press, Missouri, 1974. MR 0373985
Reference: [2] T.  Duraivel: Topology on spectrum of modules.J.  Ramanujan Math. Soc. 9 (1994), 25–34. Zbl 0835.13001, MR 1279099
Reference: [3] M.  Hochster: Prime ideal structure in commutative rings.Trans. Amer. Math. Soc. 142 (1969), 43–60. Zbl 0184.29401, MR 0251026, 10.1090/S0002-9947-1969-0251026-X
Reference: [4] C. P. Lu: $M$-radicals of submodules in modules.Math. Japon. 34 (1989), 211–219. Zbl 0706.13002, MR 0994584
Reference: [5] C. P. Lu: The Zariski topology on the prime spectrum of a module.Houston J. Math. 25 (1999), 417–432. Zbl 0979.13005, MR 1730888
Reference: [6] R. L. McCasland, M. E.  Moore and P. F.  Smith: Generators for the semimodule of varieties of a free module.Rocky Mountain J. Math. 29 (1999), 1467–1482. MR 1743380, 10.1216/rmjm/1181070416
Reference: [7] H.  Simmons: Reticulated rings.J. Algebra 66 (1980), 169–192. Zbl 0462.13002, MR 0591251, 10.1016/0021-8693(80)90118-0
Reference: [8] P. F. Smith: Some remarks on multiplication modules.Arch. Math. 50 (1998), 223–235. MR 0933916
.

Files

Files Size Format View
CzechMathJ_55-2005-2_21.pdf 294.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo