Previous |  Up |  Next

Article

Title: Star number and star arboricity of a complete multigraph (English)
Author: Lin, Chiang
Author: Shyu, Tay-Woei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 961-967
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a multigraph. The star number ${\mathrm s}(G)$ of $G$ is the minimum number of stars needed to decompose the edges of $G$. The star arboricity ${\mathrm sa}(G)$ of $G$ is the minimum number of star forests needed to decompose the edges of $G$. As usual $\lambda K_n$ denote the $\lambda $-fold complete graph on $n$ vertices (i.e., the multigraph on $n$ vertices such that there are $\lambda $ edges between every pair of vertices). In this paper, we prove that for $n \ge 2$ \[ \begin{aligned} {\mathrm s}(\lambda K_n)&= \left\rbrace \begin{array}{ll}\frac{1}{2}\lambda n&\text{if}\ \lambda \ \text{is even}, \frac{1}{2}(\lambda +1)n-1&\text{if}\ \lambda \ \text{is odd,} \end{array}\right. {\vspace{2.0pt}} {\mathrm sa}(\lambda K_n)&= \left\rbrace \begin{array}{ll}\lceil \frac{1}{2}\lambda n \rceil &\text{if}\ \lambda \ \text{is odd},\ n = 2, 3 \ \text{or}\ \lambda \ \text{is even}, \lceil \frac{1}{2}\lambda n \rceil +1 &\text{if}\ \lambda \ \text{is odd},\ n\ge 4. \end{array}\right. \end{aligned} \qquad \mathrm{(1,2)}\] (English)
Keyword: decomposition
Keyword: star arboricity
Keyword: star forest
Keyword: complete multigraph
MSC: 05C70
idZBL: Zbl 1164.05433
idMR: MR2261668
.
Date available: 2009-09-24T11:40:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128121
.
Reference: [1] J. Akiyama, M.  Kano: Path factors of a graph.In: Graphs and Applications. Proceedings of the first Cororado Symposium on Graph Theory, F. Harary, J.  Maybee (eds.), , , 1982, pp. 1–21. MR 0778395
Reference: [2] I. Algor, N.  Alon: The star arboricity of graphs.Discrete Math. 75 (1989), 11–22. MR 1001381, 10.1016/0012-365X(89)90073-3
Reference: [3] Y. Aoki: The star-arboricity of the complete regular multipartite graphs.Discrete Math. 81 (1990), 115–122. Zbl 0737.05038, MR 1054968, 10.1016/0012-365X(90)90142-5
Reference: [4] B.  Bollobás: Extremal Graph Theory.Academic Press, New York, 1978. MR 0506522
Reference: [5] J. A. Bondy, U. S. R.  Murty: Graph Theory with Applications.North Holland, New York, 1976. MR 0411988
Reference: [6] Y.  Egawa, T.  Fukuda, S.  Nagoya, M.  Urabe: A decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components.Discrete Math. 58 (1986), 93–95. MR 0820842, 10.1016/0012-365X(86)90190-1
Reference: [7] H. Enomoto, Y.  Usami: The star arboricity of complete bipartite graphs.Graph Theory, Combinatorics and Applications 1 (1988), 389–396. MR 1170792
Reference: [8] J. Hagauer, S.  Klavžar: On independence numbers of the Cartesian product of graphs.ARS Combin. 43 (1996), 149–157. MR 1415983
Reference: [9] S. L. Hakimi, J.  Mitchem, E.  Schmeichel: Star arboricity of graphs.Discrete Math. 149 (1996), 93–98. MR 1375101, 10.1016/0012-365X(94)00313-8
Reference: [10] P. K. Jha, S.  Klavžar: Independence in direct-product graphs.ARS Combin. 50 (1998), 53–63. MR 1670588
Reference: [11] C. Lin, J.-J.  Lin, and H.-C.  Lee: Some decomposition invariants of crowns.ARS Combin. 66 (2003), 33–48. MR 1961473
Reference: [12] C.  Lin, J.-J. Lin, T.-W. Shyu: Isomorphic star decomposition of multicrowns and the power of cycles.ARS Combin. 53 (1999), 249–256. MR 1724509
Reference: [13] K.-W. Lih, D.-F.  Liu, and X.  Zhu: Star extremal circulant graphs.SIAM J.  Discrete Math. 12 (1999), 491–499. MR 1720404, 10.1137/S0895480198342838
Reference: [14] C. St. J. A. Nash-Williams: Decomposition of finite graphs into forests.J. London Math. Soc. 39 (1964), 12. Zbl 0119.38805, MR 0161333
Reference: [15] M.  Truszczynski: Decomposing graphs into forests of stars.Congr. Numer. 54 (1986), 73–86. Zbl 0646.05022, MR 0885263
.

Files

Files Size Format View
CzechMathJ_56-2006-3_15.pdf 315.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo