Previous |  Up |  Next

Article

Title: $\pm$ sign pattern matrices that allow orthogonality (English)
Author: Shao, Yanling
Author: Sun, Liang
Author: Gao, Yubin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 969-979
Summary lang: English
.
Category: math
.
Summary: A sign pattern $A$ is a $\pm $ sign pattern if $A$ has no zero entries. $A$ allows orthogonality if there exists a real orthogonal matrix $B$ whose sign pattern equals $A$. Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for $\pm $ sign patterns with $n-1 \le N_-(A) \le n+1$ to allow orthogonality. (English)
Keyword: sign pattern
Keyword: orthogonality
Keyword: orthogonal matrix
MSC: 15A18
MSC: 15A36
MSC: 15A48
MSC: 15A99
idZBL: Zbl 1164.15327
idMR: MR2261669
.
Date available: 2009-09-24T11:40:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128122
.
Reference: [1] L. B.  Beasley, R. A.  Brualdi, and B. L.  Shader: Combinatorial orthogonality.In: Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A.  Brualdi, S.  Friedland, and V.  Klee (eds.), Springer-Verlag, Berlin, 1993, pp. 207–218. MR 1240965
Reference: [2] G.-S.  Cheon, B. L.  Shader: How sparse can a matrix with orthogonal rows be?.Journal of Combinatorial Theory, Series A 85 (1999), 29–40. MR 1659464, 10.1006/jcta.1998.2898
Reference: [3] C.  Waters: Sign pattern matrices that allow orthogonality.Linear Algebra Appl. 235 (1996), 1–16. Zbl 0852.15018, MR 1374247
Reference: [4] G.-S.  Cheon, C. R.  Johnson, S.-G.  Lee, and E. J.  Pribble: The possible numbers of zeros in an orthogonal matrix.Electron.  J. Linear Algebra 5 (1999), 19–23. MR 1659324
Reference: [5] C. A.  Eschenbach, F. J.  Hall, D. L.  Harrell, and Z.  Li: When does the inverse have the same pattern as the transpose?.Czechoslovak Math.  J. 124 (1999), 255–275. MR 1692477, 10.1023/A:1022496101277
Reference: [6] R. A.  Horn, C. R.  Johnson: Matrix Analysis.Cambridge University Press, Cambridge, 1985. MR 0832183
.

Files

Files Size Format View
CzechMathJ_56-2006-3_16.pdf 312.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo