Title:
|
On totally $\ast$-paranormal operators (English) |
Author:
|
Ko, Eungil |
Author:
|
Nam, Hae-Won |
Author:
|
Yang, Youngoh |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
1265-1280 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study some properties of a totally $\ast $-paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally $\ast $-paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally $\ast $-paranormal operators through the local spectral theory. Finally, we show that every totally $\ast $-paranormal operator satisfies an analogue of the single valued extension property for $W^{2}(D,H)$ and some of totally $\ast $-paranormal operators have scalar extensions. (English) |
Keyword:
|
hyponormal |
Keyword:
|
totally $\ast $-paranormal |
Keyword:
|
hypercyclic |
Keyword:
|
operators |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47B20 |
MSC:
|
47B37 |
MSC:
|
47B38 |
MSC:
|
47B40 |
idZBL:
|
Zbl 1164.47319 |
idMR:
|
MR2280808 |
. |
Date available:
|
2009-09-24T11:42:44Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128144 |
. |
Reference:
|
[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080 |
Reference:
|
[2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819 |
Reference:
|
[3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272 |
Reference:
|
[4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044 |
Reference:
|
[5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289 |
Reference:
|
[6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778 |
Reference:
|
[7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282 |
Reference:
|
[8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507 |
Reference:
|
[9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409 |
Reference:
|
[10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502 |
Reference:
|
[11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569 |
Reference:
|
[12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952 |
Reference:
|
[13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001 |
Reference:
|
[14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982. |
Reference:
|
[15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779 |
Reference:
|
[16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323 |
Reference:
|
[17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5 |
Reference:
|
[18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222 |
Reference:
|
[19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504 |
Reference:
|
[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441 |
Reference:
|
[21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966 |
Reference:
|
[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971. |
Reference:
|
[23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959 |
. |