Previous |  Up |  Next

Article

Title: On totally $\ast$-paranormal operators (English)
Author: Ko, Eungil
Author: Nam, Hae-Won
Author: Yang, Youngoh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1265-1280
Summary lang: English
.
Category: math
.
Summary: In this paper we study some properties of a totally $\ast $-paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally $\ast $-paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally $\ast $-paranormal operators through the local spectral theory. Finally, we show that every totally $\ast $-paranormal operator satisfies an analogue of the single valued extension property for $W^{2}(D,H)$ and some of totally $\ast $-paranormal operators have scalar extensions. (English)
Keyword: hyponormal
Keyword: totally $\ast $-paranormal
Keyword: hypercyclic
Keyword: operators
MSC: 47A10
MSC: 47A11
MSC: 47B20
MSC: 47B37
MSC: 47B38
MSC: 47B40
idZBL: Zbl 1164.47319
idMR: MR2280808
.
Date available: 2009-09-24T11:42:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128144
.
Reference: [1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II.Research Notes in Mathematics 102, Pitman, Boston, 1984. MR 0735080
Reference: [2] S. C. Arora and J. K. Thukral: On a class of operators.Glasnik Math. 21 (1986), 381–386. MR 0896819
Reference: [3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators.Michigan Math J. 16 (1969), 273–279. Zbl 0175.13603, MR 0250094, 10.1307/mmj/1029000272
Reference: [4] S. K. Berberian: The Weyl’s spectrum of an operator.Indiana Univ. Math. J. 20 (1970), 529–544. MR 0279623, 10.1512/iumj.1971.20.20044
Reference: [5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces.Ann. of Math. 125 (1987), 93–103. MR 0873378, 10.2307/1971289
Reference: [6] L. A. Coburn: Weyl’s theorem for non-normal operators.Michigan Math. J. 13 (1966), 285–288. MR 0201969, 10.1307/mmj/1031732778
Reference: [7] I. Colojoara and C. Foias: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282
Reference: [8] J. B. Conway: Subnormal operators.Pitman, London, 1981. Zbl 0474.47013, MR 0634507
Reference: [9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory.Glasgow Math. J. 44 (2002), 323–327. MR 1902409
Reference: [10] B. P. Duggal: On the spectrum of $p$-hyponormal operators.Acta Sci. Math. (Szeged) 63 (1997), 623–637. Zbl 0893.47013, MR 1480502
Reference: [11] J. Eschmeier: Invariant subspaces for subscalar operators.Arch. Math. 52 (1989), 562–570. Zbl 0651.47002, MR 1007631, 10.1007/BF01237569
Reference: [12] P. R. Halmos: A Hilbert space problem book.Springer-Verlag, 1982. Zbl 0496.47001, MR 0675952
Reference: [13] R. E. Harte: Invertibility and singularity.Dekker, New York, 1988. Zbl 0678.47001
Reference: [14] C. Kitai: Invariant closed sets for linear operators.Ph.D. Thesis, Univ. of Toronto, 1982.
Reference: [15] E. Ko: Algebraic and triangular $n$-hyponormal operators.Proc. Amer. Math. Soc. 123 (1995), 3473–3481. Zbl 0877.47015, MR 1291779
Reference: [16] K. B. Laursen: Operators with finite ascent.Pacific J. Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323
Reference: [17] K. B. Laursen: Essential spectra through local spectral theory.Proc. Amer. Math. Soc. 125 (1997), 1425–1434. Zbl 0871.47003, MR 1389525, 10.1090/S0002-9939-97-03852-5
Reference: [18] K. K. Oberai: On the Weyl spectrum.Illinois J. Math. 18 (1974), 208–212. Zbl 0277.47002, MR 0333762, 10.1215/ijm/1256051222
Reference: [19] K. K. Oberai: On the Weyl spectrum (II).Illinois J. Math. 21 (1977), 84–90. Zbl 0358.47004, MR 0428073, 10.1215/ijm/1256049504
Reference: [20] M. Putinar: Hyponormal operators are subscalar.J. Operator Th. 12 (1984), 385–395. Zbl 0573.47016, MR 0757441
Reference: [21] R. Lange: Biquasitriangularity and spectral continuity.Glasgow Math. J. 26 (1985), 177–180. Zbl 0583.47006, MR 0798746, 10.1017/S0017089500005966
Reference: [22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators.Ph.D. thesis, Indiana Univ., 1971.
Reference: [23] D. Xia: Spectral theory of hyponormal operators.Operator Theory 10, Birkhäuser-Verlag, 1983. Zbl 0523.47012, MR 0806959
.

Files

Files Size Format View
CzechMathJ_56-2006-4_14.pdf 382.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo