Previous |  Up |  Next

Article

Title: A constructive method to determine the variety of filiform Lie algebras (English)
Author: Echarte, F. J.
Author: Márquez, M. C.
Author: Núñez, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1281-1299
Summary lang: English
.
Category: math
.
Summary: In this paper we use cohomology of Lie algebras to study the variety of laws associated with filiform Lie algebras of a given dimension. As the main result, we describe a constructive way to find a small set of polynomials which define this variety. It allows to improve previous results related with the cardinal of this set. We have also computed explicitly these polynomials in the case of dimensions 11 and 12. (English)
Keyword: cohomology of nilpotent Lie algebras
Keyword: graded filiform Lie algebras
Keyword: variety of laws of filiform Lie algebras
Keyword: irreducible component
Keyword: algorithm
MSC: 17B30
MSC: 17B56
idZBL: Zbl 1164.17012
idMR: MR2280809
.
Date available: 2009-09-24T11:42:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128145
.
Reference: [1] M. Vergne: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algèbres de Lie nilpotentes.Bull. Soc. Math. France 98 (1970), 81–116. Zbl 0244.17011, MR 0289609
Reference: [2] N.  Blackburn: On a special class of $p$-groups.Acta Math. 100 (1958), 45–92. Zbl 0083.24802, MR 0102558, 10.1007/BF02559602
Reference: [3] L.  Boza Prieto, E. M. Fedriani Martel, and J. Núñez Valdés: A new method for classifying complex filiform Lie algebras.Applied Mathematics and Computation 121 (2001), 169–175. MR 1830867, 10.1016/S0096-3003(99)00270-2
Reference: [4] M.  Goze, Y. B.  Khakimdjanov: Nilpotent and Solvable Lie Algebras. Handbook of Algebra, Vol.  2.M.  Hazewinkel (ed.), Elsevier, 2000. 10.1016/S1570-7954(00)80040-6
Reference: [5] Y. B. Khakimdjanov: Varieties of Lie Algebras Laws. Handbook of Algebra, Vol.  2.M. Hazewinkel (ed.), Elsevier, 2000.
Reference: [6] M.  Goze, Y. B.  Khakimdjanov: Nilpotent Lie Algebras.Kluwer Academic Publishers, , 1996. MR 1383588
Reference: [7] Y. B.  Khakimdjanov: Variété des lois d’algèbres de Lie nilpotentes.Geometriae Dedicata 40 (1991), 269–295. MR 1137083
.

Files

Files Size Format View
CzechMathJ_56-2006-4_15.pdf 375.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo