Previous |  Up |  Next

Article

Title: Clifford-Hermite-monogenic operators (English)
Author: Brackx, Fred
Author: de Schepper, Nele
Author: Sommen, Frank
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 4
Year: 2006
Pages: 1301-1322
Summary lang: English
.
Category: math
.
Summary: In this paper we consider operators acting on a subspace $\mathcal M$ of the space $L_2(\mathbb{R}^m;\mathbb{C}_m)$ of square integrable functions and, in particular, Clifford differential operators with polynomial coefficients. The subspace ${\mathcal M}$ is defined as the orthogonal sum of spaces ${\mathcal M}_{s,k}$ of specific Clifford basis functions of $L_2(\mathbb{R}^m;\mathbb{C}_m)$. Every Clifford endomorphism of ${\mathcal M}$ can be decomposed into the so-called Clifford-Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are characterized in terms of commutation relations and they transform a space ${\mathcal M}_{s,k}$ into a similar space ${\mathcal M}_{s^{\prime }\!,k^{\prime }}$. Hence, once the Clifford-Hermite-monogenic decomposition of an operator is obtained, its action on the space ${\mathcal M}$ is known. Furthermore, the monogenic decomposition of some important Clifford differential operators with polynomial coefficients is studied in detail. (English)
Keyword: differential operators
Keyword: Clifford analysis
MSC: 30G35
MSC: 47B99
MSC: 47F05
idZBL: Zbl 1164.47336
idMR: MR2280810
.
Date available: 2009-09-24T11:42:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128146
.
Reference: [1] F.  Brackx, R.  Delanghe, F.  Sommen: Clifford Analysis.Pitman Publ., Boston-London-Melbourne, 1982. MR 0697564
Reference: [2] F.  Brackx, N.  De Schepper, K. I.  Kou, and F. Sommen: The Mehler formula for the generalized Clifford-Hermite polynomials.Acta Mathematica Sinica, Accepted.
Reference: [3] R. Delanghe, F.  Sommen, and V.  Souček: Clifford Algebra and Spinor-Valued Functions.Kluwer Acad. Publ., Dordrecht, 1992. MR 1169463
Reference: [4] F.  Sommen: Special functions in Clifford analysis and axial symmetry.J.  Math. Anal. Appl. 130 (1988), 110–133. Zbl 0634.30042, MR 0926831, 10.1016/0022-247X(88)90389-7
Reference: [5] F.  Sommen, N.  Van Acker: Monogenic differential operators.Results Math. 22 (1992), 781–798. MR 1189765, 10.1007/BF03323123
.

Files

Files Size Format View
CzechMathJ_56-2006-4_16.pdf 382.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo