Previous |  Up |  Next

Article

References:
[1] W. Arveson: An invitation to $C$*-algebra. Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0512360
[2] J. A. Deddens: Every isometry is reflexive. Proc. Amer. Math. Soc. 28 (1971), 509–512. DOI 10.1090/S0002-9939-1971-0278099-7 | MR 0278099 | Zbl 0213.14304
[3] J. Dixmier: Les Algèbres d’opérateurs dans l’espace Hilbertien. Gauthier-Villars, Paris, 1957. MR 0094722 | Zbl 0088.32304
[4] K. Horák and V. Müller: Functional model for commuting isometries. Czech. J. Math. 39 (1989), 370–379. MR 0992140
[5] R. F. Olin and J. E. Thomson: Algebras of subnormal operators. J. Funct. Anal., 37 (1980), 271–301. DOI 10.1016/0022-1236(80)90045-2 | MR 0581424
[6] M. Ptak: On the reflexivity of pairs of isometries and of tensor products of some operator algebras. Studia Math. 83 (1986), 47–55. MR 0829898
[7] M. Ptak: Reflexivity of pairs of shifts. Proc. Amer. Math. Soc. 109 (1990), 409–415. DOI 10.1090/S0002-9939-1990-1007510-0 | MR 1007510 | Zbl 0734.47023
[8] H. Radjavi and P. Rosenthal: Invariant Subspaces. (1973), Springer-Verlag, New York-Heidelberg-Berlin. MR 0367682
[9] D. Sarason: Invariant subspaces and unstarred operator algebras. Pacific J. Math. 17 (1966), 511–517. DOI 10.2140/pjm.1966.17.511 | MR 0192365 | Zbl 0171.33703
[10] I. E. Segal: Decompositions of operator algebras, I and II. Memoirs of the AMS, No. 9, 1951. MR 0044749
[11] W. R. Wogen: Quasinormal operators are reflexive. Bull. London Math. Soc. 11 (1979), 19–22. MR 0535790 | Zbl 0415.47016
[12] M. Zajac: Hyperreflexivity of isometries and weak contractions. J. Oper. Th. (to appear).
Partner of
EuDML logo