Previous |  Up |  Next

Article

References:
[1] P.R. Halmos: Capacity in Banach algebras. Indiana Univ. Math. J. 20 (1971), 855–863. DOI 10.1512/iumj.1971.20.20067 | MR 0268672 | Zbl 0196.14803
[2] R. Harte: Tensor products, multiplication operators and the spectral mapping theorem. Proc. Roy. Irish Acad. Sect. A 73 (1973), 285–302. MR 0328642 | Zbl 0265.47034
[3] R. Levi: Notes on the Taylor joint spectrum of commuting operators. Spectral Theory, Banach Center Publications Vol. 8, 1982, pp. 321–332. MR 0738292 | Zbl 0496.47017
[4] J. Siciak: Extremal plurisubharmonic functions and capacities in ${C}^n$. Sophia Kokyuroku in Mathematics 14 (1982).
[5] A. Sołtysiak: Capacity of finite systems of elements in Banach algebras. Comm. Math. 19 yr1977, 405–411. MR 0477779
[6] A. Sołtysiak: Some remarks on the joint capacities in Banach algebras. Comm. Math. 20 (1977), 197–204. MR 0463939
[7] A. Sołtysiak: On a certain class of subspectra. Comm. Math. Univ. Carolinae (to appear).
[8] D.S.G. Stirling: Perturbations of operators which leave capacity invariant. J. London Math. Soc. 10 (1975), 75–78. DOI 10.1112/jlms/s2-10.1.75 | MR 0367697 | Zbl 0297.47001
[9] D.S.G. Stirling: The joint capacity of elements of Banach algebras. J. London Math. Soc. 10 (1975), 212–218. DOI 10.1112/jlms/s2-10.2.212 | MR 0370195 | Zbl 0302.46035
[10] V.P. Zakharyuta: Transfinite diameter, Tshebyshev constant and a capacity of a compact set in ${C}^n$. Mat. Sb. 96 (1975), 374–389. (Russian)
[11] W. .Zelazko: Axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249–261. MR 0544729 | Zbl 0426.47002
Partner of
EuDML logo