Title:
|
A Hake-type property for the $\nu_1$-integral and its relation to other integration processes (English) |
Author:
|
Jurkat, W. B. |
Author:
|
Nonnenmacher, D. J. F. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
1995 |
Pages:
|
465-472 |
. |
Category:
|
math |
. |
MSC:
|
26A39 |
MSC:
|
26B20 |
idZBL:
|
Zbl 0852.26008 |
idMR:
|
MR1344512 |
DOI:
|
10.21136/CMJ.1995.128533 |
. |
Date available:
|
2009-09-24T09:49:25Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128533 |
. |
Reference:
|
[Fed] H. Federer: Geometric Measure Theory.Springer, New York, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[Jar-Ku] J. Jarnik and J. Kurzweil: A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35 (110) (1985), 116–139. MR 0779340 |
Reference:
|
[JKS] J. Jarnik, J. Kurzweil and S. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integral.Casopis Pest. Mat. 108 (1983), 356–380. MR 0727536 |
Reference:
|
[Ju-No 1] W.B. Jurkat and D.J.F. Nonnenmacher: An axiomatic theory of non-absolutely convergent integrals in $R^n$.Fund. Math. 145 (1994), 221–242. MR 1297406, 10.4064/fm-145-3-221-242 |
Reference:
|
[Ju-No 2] W.B. Jurkat and D.J.F. Nonnenmacher: A generalized $n$-dimensional Riemann integral and the Divergence Theorem with singularities.Acta Sci. Math. (Szeged) 59 (1994), 241–256. MR 1285443 |
Reference:
|
[Ju-No 3] W.B. Jurkat and D.J.F. Nonnenmacher: The Fundamental Theorem for the $\nu _1$-integral on more general sets and a corresponding Divergence Theorem with singularities.(to appear). MR 1314531 |
Reference:
|
[Ku-Jar] J. Kurzweil and J. Jarnik: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results in Mathematics 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 |
Reference:
|
[No] D.J.F. Nonnenmacher: Every $M_1$-integrable function is Pfeffer integrable.Czech. Math. J. 43 (118) (1993), 327–330. MR 1211754 |
Reference:
|
[Pf] W.F. Pfeffer: The Gauss-Green theorem.Adv. in Math. 87 (1991), no. 1, 93–147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D |
Reference:
|
[Saks] S. Saks: Theory of the integral.Dover, New York, 1964. MR 0167578 |
. |