Title:
|
On complete $MV$-algebras (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
1995 |
Pages:
|
473-480 |
. |
Category:
|
math |
. |
MSC:
|
03G25 |
MSC:
|
06D30 |
MSC:
|
06D99 |
idZBL:
|
Zbl 0841.06010 |
idMR:
|
MR1344513 |
DOI:
|
10.21136/CMJ.1995.128535 |
. |
Date available:
|
2009-09-24T09:49:32Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128535 |
. |
Reference:
|
[1] C. C. Chang: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[2] C. C. Chang: A new proof of the completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. Zbl 0093.01104, MR 0122718 |
Reference:
|
[3] R. Cignoli: Complete and atomic algebras of the infinite valued Łukasiewicz logic.Studia Logica 50 (1991), 3–4375–384. Zbl 0753.03026, MR 1170180, 10.1007/BF00370678 |
Reference:
|
[4] L. Fuchs: Partially ordered algebraic systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864 |
Reference:
|
[5] D. Gluschankof: Cyclic ordered groups and $MV$-algebras.Czechoslov. Math. J. 43 (1993), 249–263. Zbl 0795.06015, MR 1211747 |
Reference:
|
[6] J. Jakubík: Direct product decompositions of $MV$-algebras.Czechoslov. Math. J (to appear). |
Reference:
|
[7] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus.Jour. Functional. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[8] D. Mundici: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras.Math. Japonica 31 (1986), 889–894. Zbl 0633.03066, MR 0870978 |
Reference:
|
[9] F. Šik: To the theory of lattice ordered groups.Czechoslov. Math. J. 6 (1956), 1–25. (Russian) |
Reference:
|
[10] T. Traczyk: On the variety of bounded commutative $BCK$-algebras.Math. Japonica 24 (1979), 238–282. Zbl 0422.03038, MR 0550212 |
. |