Title:
|
Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term (English) |
Author:
|
Andres, Jan |
Author:
|
Bersani, Alberto Maria |
Author:
|
Radová, Lenka |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
45 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
7-29 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of $\varepsilon $ for $\varepsilon $-almost-periods of solutions and their derivatives are also deduced under various restrictions imposed on the constant coefficients of the linear differential operator on the left-hand side of the given equation. Besides the existence, uniqueness and localization of almost-periodic solutions and their derivatives are established. (English) |
Keyword:
|
Almost-periodic solutions |
Keyword:
|
various metrics |
Keyword:
|
higher-order differential equation |
Keyword:
|
nonlinear restoring term |
Keyword:
|
existence and uniqueness criteria |
MSC:
|
34C15 |
MSC:
|
34C27 |
MSC:
|
42A75 |
idZBL:
|
Zbl 1128.34029 |
idMR:
|
MR2321293 |
. |
Date available:
|
2009-08-21T07:05:17Z |
Last updated:
|
2012-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133445 |
. |
Reference:
|
[A1] Andres J.: Existence of two almost periodic solutions of pendulum-type equations.Nonlin. Anal. 37 (1999), 797–804. Zbl 1014.34032, MR 1692807 |
Reference:
|
[A2] Andres J.: Almost-periodic and bounded solutions of Carathéodory differential inclusions.Differential Integral Eqns 12, (1999), 887–912. Zbl 1017.34011, MR 1728035 |
Reference:
|
[A3] Andres J.: Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions.Lecture Notes in Nonlinear Anal. 2, (J. Andres, L. Górniewicz and P. Nistri, eds.), N. Copernicus Univ., Toruń, 1998, 35–50. Zbl 1096.34508 |
Reference:
|
[AB] Andres J., Bersani A. M.: Almost-periodicity problem as a fixed-point problem for evolution inclusions.Topol. Meth. Nonlin. Anal. 18 (2001), 337–350. Zbl 1013.34063, MR 1911386 |
Reference:
|
[ABG] Andres J., Bersani A. M., Grande R. F.: Hierarchy of almost-periodic function spaces.Rendiconti Mat. Appl. Ser. VII, 26, 2 (2006), 121–188. Zbl 1133.42002, MR 2275292 |
Reference:
|
[ABL] Andres J., Bersani A. M., Leśniak K.: On some almost-periodicity problems in various metrics.Acta Appl. Math. 65, 1-3 (2001), 35–57. Zbl 0997.34032, MR 1843785 |
Reference:
|
[AG] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems. : Kluwer, Dordrecht.2003. MR 1998968 |
Reference:
|
[AK] Andres J., Krajc B.: Unified approach to bounded, periodic and almost periodic solutions of differential systems.Ann. Math. Sil. 11 (1997), 39–53. Zbl 0899.34029, MR 1604867 |
Reference:
|
[BFSD1] Belley J. M., Fournier G., Saadi Drissi K.: Almost periodic weak solutions to forced pendulum type equations without friction.Aequationes Math. 44 (1992), 100–108. Zbl 0763.34035, MR 1165787 |
Reference:
|
[BFSD2] Belley J. M., Fournier G., Saadi Drissi K.: Solutions faibles presque périodiques d’équation différentialle du type du pendule forcé.Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 173–186. MR 1266017 |
Reference:
|
[BFSD3] Belley J. M., Fournier G., Saadi Drissi K.: Solutions presque périodiques du systéme différential du type du pendule forcé.Acad. Roy. Belg. Bull. Cl. Sci. 6, 3 (1992), 265–278. |
Reference:
|
[BFH] Belley J. M., Fournier G., Hayes J.: Existence of almost periodic weak type solutions for the conservative forced perdulum equation.J. Diff. Eqns 124, (1996), 205–224. MR 1368066 |
Reference:
|
[D1] Danilov L. I.: Almost periodic solutions of multivalued maps.Izv. Otdela Mat. Inform. Udmurtsk. Gos. Univ. 1 (1993), Izhevsk, 16–78 (in Russian). |
Reference:
|
[D2] Danilov L. I.: Measure-valued almost periodic functions and almost periodic selections of multivalued maps.Mat. Sb. 188 (1997), 3–24 (in Russian); Sbornik: Mathematics 188 (1997), 1417–1438. Zbl 0889.42009, MR 1485446 |
Reference:
|
[D3] Danilov L. I.: On Weyl almost periodic solutions of multivalued maps.J. Math. Anal. Appl. 316, 1 (2006), 110–127. MR 2201752 |
Reference:
|
[DHS] Deimling K., Hetzer G., Wenxian Shen: Almost periodicity enforced by Coulomb friction.Advances Diff. Eqns 1, 2 (1996), 265–281. MR 1364004 |
Reference:
|
[DM] Dzurnak A., Mingarelli A. B.: Sturm-Liouville equations with Besicovitch almost periodicity.Proceed. Amer. Math. Soc. 106, 3 (1989), 647–653. MR 0938910 |
Reference:
|
[DS] Dolbilov A. M., Shneiberg I. Ya.: Almost periodic multifunctions and their selections.Sibirsk. Mat. Zh. 32 (1991), 172–175 (in Russian). MR 1138453 |
Reference:
|
[H] Haraux A.: Asymptotic behavior for two-dimensional, quasi-autonomous, almost-periodic evolution equations.J. Diff. Eqns 66 (1987), 62–70. Zbl 0625.34051, MR 0871571 |
Reference:
|
[HP] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory. : Kluwer, Dordrecht.1997. MR 1485775 |
Reference:
|
[Kh] Kharasakhal V. Kh.: Almost-Periodic Solutions of Ordinary Differential Equations. : Nauka, Alma-Ata.1970 (in Russian). MR 0293176 |
Reference:
|
[KBK] Krasnosel’skii M. A., Burd V. Sh., Kolesov, Yu. S.: Nonlinear Almost Periodic Oscillations. : Nauka, Moscow.1970 (in Russian); English translation: J. Wiley, New York, 1971. MR 0298131 |
Reference:
|
[Ku] Kunze M.: Non-Smooth Dynamical Systems. : Lect. Notes Math., Vol. 1744, Springer, Berlin.2000. MR 1789550 |
Reference:
|
[L] Levitan B. M.: Almost Periodic Functions. : GITTL, Moscow.1953 (in Russian). MR 0060629 |
Reference:
|
[LZ] Levitan B. M., Zhikov V. V.: Almost Periodic Functions, Differential Equations. : Cambridge Univ. Press, Cambridge.1982. MR 0690064 |
Reference:
|
[P] Pankov A. A.: Bounded, Almost Periodic Solutions of Nonlinear Operator Differential Equations. : Kluwer, Dordrecht.1990. MR 1120781 |
Reference:
|
[R] Radová L.: Theorems of Bohr–Neugebauer-type for almost-periodic differential equations.Math. Slovaca 54 (2004), 191–207. Zbl 1068.34042, MR 2074215 |
Reference:
|
[ZL] Zhikov V. V., Levitan B. M.: The Favard theory.Uspekhi Matem. Nauk. 32 (1977), 123–171 (in Russian); Russian Math. Surv. 32 (1977), 129–180. MR 0470405 |
. |