Previous |  Up |  Next

Article

Title: $2-(n^2, 2n, 2n-1)$ designs obtained from affine planes (English)
Author: Caggegi, Andrea
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 45
Issue: 1
Year: 2006
Pages: 31-34
Summary lang: English
.
Category: math
.
Summary: The simple incidence structure ${\mathcal D}({\mathcal A}, 2)$ formed by points and unordered pairs of distinct parallel lines of a finite affine plane ${\mathcal A} = ({\mathcal P}, {\mathcal L})$ of order $n>2$ is a $2-(n^2,2n,2n-1)$ design. If $n = 3$, ${\mathcal D}({\mathcal A}, 2)$ is the complementary design of ${\mathcal A}$. If $n = 4$, ${\mathcal D}({\mathcal A}, 2)$ is isomorphic to the geometric design $AG_3(4, 2)$ (see [2; Theorem 1.2]). In this paper we give necessary and sufficient conditions for a $2-(n^2,2n,2n-1)$ design to be of the form ${\mathcal D}({\mathcal A}, 2)$ for some finite affine plane ${\mathcal A}$ of order $n>4$. As a consequence we obtain a characterization of small designs ${\mathcal D}({\mathcal A}, 2)$. (English)
Keyword: $2-(n^2, 2n, 2n-1)$ designs
Keyword: incidence structure
Keyword: affine planes
MSC: 05B05
MSC: 05B25
MSC: 51E15
idZBL: Zbl 1125.05015
idMR: MR2321294
.
Date available: 2009-08-21T07:04:29Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133442
.
Reference: [1] Beth T., Jungnickel, D, Lenz H.: Designs Theory. : Bibliographisches Institut, Mannheim–Wien.1985. MR 0779284
Reference: [2] Caggegi A.: Uniqueness of $AG_3(4, 2)$.Italian Journal of Pure and Applied Mathematics 15 (2004), 9–16. Zbl 1175.05028
Reference: [3] Hanani H.: Balanced incomplete block designs and related designs.Discrete Math. 11 (1975), 255–369. Zbl 0361.62067, MR 0382030
Reference: [4] Hughes D. R., Piper F. C.: Projective Planes. : Springer-Verlag, Berlin–Heidelberg–New York.1982, second printing. MR 0333959
.

Files

Files Size Format View
ActaOlom_45-2006-1_2.pdf 320.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo