Previous |  Up |  Next

Article

Title: A study of bending waves in infinite and anisotropic plates (English)
Author: Lindblom, Ove
Author: Näslund, Reinhold
Author: Persson, Lars-Erik
Author: Fällström, Karl-Evert
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 3
Year: 1997
Pages: 213-232
Summary lang: English
.
Category: math
.
Summary: In this paper we present a unified approach to obtain integral representation formulas for describing the propagation of bending waves in infinite plates. The general anisotropic case is included and both new and well-known formulas are obtained in special cases (e.g. the classical Boussinesq formula). The formulas we have derived have been compared with experimental data and the coincidence is very good in all cases. (English)
Keyword: Kirchoff plate equation
Keyword: bending waves
Keyword: anisotropic plates
Keyword: orthotropic plates
Keyword: isotropic plates
Keyword: the Fourier transform
Keyword: Boussinesq formula
MSC: 35C15
MSC: 35Q72
MSC: 73K10
MSC: 74K20
idZBL: Zbl 0898.35019
idMR: MR1441631
DOI: 10.1023/A:1022469605398
.
Date available: 2009-09-22T17:54:35Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134354
.
Reference: [1] A. Das, K. Roy: Note on the forced vibration of an orthotropic plate on an elastic foundation.Journal of Sound and Vibration 66(4) (1979), 521–525. 10.1016/0022-460X(79)90696-5
Reference: [2] M. Engliš, J. Peetre: A Green’s function for the annulus.Research report 95/7002, Department of Mathematics, Lund University (ISRN LUTFD2/TFMA) (53 pages), submitted (1995). MR 1441874
Reference: [3] K.-E. Fällström: Material parameters and defects in anisotropic plates determined by holografic Interferometry.Ph.D. Thesis 1990: 86 D, Department of Physics, Luleå University of Technology, 1990.
Reference: [4] K.-E. Fällström, O. Lindblom: Material parameters in anisotropic plates determined by using transient bending waves.Research report. Luleå University of Technology (10 pages), submitted 1996.
Reference: [5] I.S. Gradshteyn, I.M. Ryzhik: Table of Integrals, Series and Products.Academic Press, 1965.
Reference: [6] S.G. Lekhnitskii: Anisotropic Plates, translated by S.W. Tsai and T. Cheron.Gordon and Breach Science Publishers, 1944.
Reference: [7] J. Malmquist, V. Stenström, S. Danielsson: Mathematical Analysis, III.Almqvist & Wiksell, 1954, pp. 584–594. (Swedish)
Reference: [8] L. Meirovitch: Analytical Methods in Vibration.The MacMillan Company, New York, 1967.
Reference: [9] S.V. More: The symmetrical free vibrations of a thin elastic plate with initial conditions as a generalized function.Indian J. Pure Appl. Math. 10(4) (1979), 431–436. MR 0527355
Reference: [10] Kenneth Olofsson: Pulsed holographic interferometry for the study of bending wave propagation in paper and in tubes.Ph.D. Thesis 1994:144 D, Department of Physics, Luleå University of Technology, 1994.
Reference: [11] L.-E. Persson, T. Strömberg: Green’s method applied to the plate equation in mechanics.Comment. Math. Prace Mat 33 (1993), 119–133.
Reference: [12] I.N. Sneddon: The Use of Integral Transforms.McGraw-Hill Company, Inc., New York, 1972. Zbl 0237.44001
Reference: [13] I.N. Sneddon: The Symmetrical Vibrations of a Thin Elastic Plate.Proceedings of the Cambridge Philosophical Society, Volume 41, Cambridge University Press, 27–42, 1945. Zbl 0063.07102, MR 0011882
Reference: [14] I.N. Sneddon: The Fourier Transform Solution of an Elastic Wave Equation.Proceedings of the Cambridge Philosophical Society, Volume 41, Cambridge University Press, 1945, pp. 239–243. Zbl 0063.07103, MR 0013505
Reference: [15] E.M. Stein, G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces.Princeton University Press, New Yersey, 1971. MR 0304972
Reference: [16] E.C. Titchmarsch: The Theory of Functions, Second Edition.Oxford University Press, 1939.
.

Files

Files Size Format View
AplMat_42-1997-3_4.pdf 941.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo