Previous |  Up |  Next

Article

Title: On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains (English)
Author: Feistauer, Miloslav
Author: Najzar, Karel
Author: Sobotíková, Veronika
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 5
Year: 2001
Pages: 353-382
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal domain with a curved boundary. The existence and uniqueness of the solution of the continuous problem is a consequence of the monotone operator theory. The main attention is paid to the effect of the basic finite element variational crimes: approximation of the curved boundary by a polygonal one and the evaluation of integrals by numerical quadratures. With the aid of some important properties of Zlámal’s ideal triangulation and interpolation, the convergence of the method is analyzed. (English)
Keyword: elliptic equation
Keyword: nonlinear Newton boundary condition
Keyword: monotone operator method
Keyword: finite element approximation
Keyword: approximation of a curved boundary
Keyword: numerical integration
Keyword: ideal triangulation
Keyword: ideal interpolation
Keyword: convergence of the finite element method
MSC: 35J05
MSC: 35J65
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1066.65124
idMR: MR1925193
DOI: 10.1023/A:1013756310753
.
Date available: 2009-09-22T18:07:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134473
.
Reference: [1] R.  Bialecki, A. J.  Nowak: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions.Appl. Math. Modelling 5 (1981), 417–421. 10.1016/S0307-904X(81)80024-8
Reference: [2] S. S. Chow: Finite element error estimates for nonlinear elliptic equations of monotone type.Numer. Math. 54 (1988), 373–393. Zbl 0643.65058, MR 0972416
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] P. G.  Ciarlet, P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element method.In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 409–474. MR 0421108
Reference: [5] M.  Feistauer: On the finite element approximation of a cascade flow problem.Numer. Math. 50 (1987), 655–684. Zbl 0646.76085, MR 0884294, 10.1007/BF01398378
Reference: [6] M.  Feistauer, H. Kalis and M. Rokyta: Mathematical modelling of an electrolysis process.Comment. Math. Univ. Carolin. 30 (1989), 465–477. MR 1031864
Reference: [7] M. Feistauer, M.  Křížek and V.  Sobotíková: An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type.East-West J.  Numer. Math. 1 (1993), 267–285. MR 1318806
Reference: [8] M.  Feistauer, K.  Najzar: Finite element approximation of a problem with a nonlinear Newton boundary condition.Numer. Math. 78 (1998), 403–425. MR 1603350, 10.1007/s002110050318
Reference: [9] M.  Feistauer, K.  Najzar and V. Sobotíková: Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions.Numer. Funct. Anal. Optim. 20 (1999), 835–851. MR 1728186, 10.1080/01630569908816927
Reference: [10] M.  Feistauer, K.  Najzar, V.  Sobotíková and P.  Sváček: Numerical analysis of problems with nonlinear Newton boundary conditions.In: Numerical Mathematics and Advanced Applications, Proc. of the Conf. ENUMATH99, P.  Neittaanmäki, T. Tiihonen and P. Tarvainen (eds.), World Scientific, Singapore, 2000, pp. 486–493.
Reference: [11] M.  Feistauer, V.  Sobotíková: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients.RAIRO Modél. Math. Anal. Numér. 24 (1990), 457–500. MR 1070966, 10.1051/m2an/1990240404571
Reference: [12] M.  Feistauer, A.  Ženíšek: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451–475. MR 0875168, 10.1007/BF01396664
Reference: [13] M.  Feistauer, A.  Ženíšek: Compactness method in the finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147–163. MR 0923708, 10.1007/BF01398687
Reference: [14] J. Franců: Monotone operators. A survey directed to applications to differential equations.Appl. Math. 35 (1990), 257–301. MR 1065003
Reference: [15] M.  Ganesh, I. G.  Graham and J.  Sivaloganathan: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity.SIAM J.  Numer. Anal. 31 (1994), 1378–1414. MR 1293521, 10.1137/0731072
Reference: [16] M. Ganesh, O. Steinbach: Boundary element methods for potential problems with nonlinear boundary conditions.Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney (1998).
Reference: [17] M.  Ganesh, O.  Steinbach: Nonlinear boundary integral equations for harmonic problems.Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney (1998). MR 1738277
Reference: [18] J.  Gwinner: A discretization theory for monotone semicoercive problems and finite element convergence for $p$-harmonic Signorini problems.Z. Angew. Math. Mech. 74 (1994), 417–427. Zbl 0823.31006, MR 1296460, 10.1002/zamm.19940740917
Reference: [19] M.  Křížek, L.  Liu and P.  Neittaanmäki: Finite element analysis of a nonlinear elliptic problem with a pure radiation condition.In: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp. 271–280. MR 1727454
Reference: [20] A.  Kufner, O.  John and S.  Fučík: Function Spaces.Academia, Praha, 1977. MR 0482102
Reference: [21] L.  Liu, M.  Křížek: Finite element analysis of a radiation heat transfer problem.J.  Comput. Math. 16 (1998), 327–336.
Reference: [22] R. Moreau, J. W.  Ewans: An analysis of the hydrodynamics of aluminium reduction cells.J.  Electrochem. Soc. 31 (1984), 2251–2259.
Reference: [23] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [24] V. Sobotíková: Finite elements on curved domains.East-West J.  Numer. Math. 4 (1996), 137–149. MR 1403648
Reference: [25] G.  Strang: Variational crimes in the finite element method.In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 689–710. Zbl 0264.65068, MR 0413554
Reference: [26] P.  Sváček: Higher order finite element method for a problem with nonlinear boundary condition.In: Proc. of the 13th Summer School “Software and Algorithms of Numerical Mathematics”, University of West Bohemia in Pilsen, 1999, pp. 301–308.
Reference: [27] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements.Appl. Math. 26 (1981), 121–141. MR 0612669
Reference: [28] A.  Ženíšek: The finite element method for nonlinear elliptic equations with discontinuous coefficients.Numer. Math. 58 (1990), 51–77. MR 1069653, 10.1007/BF01385610
Reference: [29] A.  Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [30] M.  Zlámal: Curved elements in the finite element method, I.SIAM J.  Numer. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_46-2001-5_3.pdf 467.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo