Previous |  Up |  Next

Article

Title: Nonlinear boundary value problems describing mobile carrier transport in semiconductor devices (English)
Author: Borevich, E. Z.
Author: Chistyakov, V. M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 46
Issue: 5
Year: 2001
Pages: 383-400
Summary lang: English
.
Category: math
.
Summary: The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions. (English)
Keyword: nonlinear boundary value problem
Keyword: asymptotic behaviour of solutions
Keyword: semiconductors
Keyword: carrier transport
Keyword: constant densities of ionized impurities
Keyword: interior transition layer phenomena
MSC: 35B35
MSC: 35B40
MSC: 35D05
MSC: 35F20
MSC: 35Q20
MSC: 82D37
idZBL: Zbl 1059.35026
idMR: MR1925194
DOI: 10.1023/A:1013708427592
.
Date available: 2009-09-22T18:07:39Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134474
.
Reference: [1] L. Recke: An example for bifurcation of solutions of the basic equations for carrier distributions in semiconductors.Z.  Angew. Math. Mech. 67 (1987), 269–271. Zbl 0625.34014, MR 0916259, 10.1002/zamm.19870670614
Reference: [2] P. C. Fife: Boundary and interior transition layer phenomena for pairs of second-order differential equations.J. Math. Anal. Appl. 54 (1976), 497–521. Zbl 0345.34044, MR 0419961, 10.1016/0022-247X(76)90218-3
Reference: [3] P. C. Fife: Transition Layers in Singular Perturbation Problems.J. Differential Equations 15 (1974), 77–105. Zbl 0259.34067, MR 0330665, 10.1016/0022-0396(74)90088-6
Reference: [4] M. G. Crandall, P. H. Rabinowitz: Bifurcation from simple eigenvalues.J. Funct. Anal. 8 (1971), 321–340. MR 0288640
Reference: [5] V. L. Bonch-Bruevich: Domain Electric Instability in Semiconductors.Nauka, Moskva, 1972. (Russian)
Reference: [6] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J. Funct. Anal. 7 (1971), 487–513. Zbl 0212.16504, MR 0301587
Reference: [7] R. E. O’Malley jun.: Phase-plane solutions to some perturbation problems.J. Math. Anal. Appl. 54 (1976), 449–466. MR 0450722, 10.1016/0022-247X(76)90214-6
Reference: [8] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics.Springer-Verlag, Berlin-Heidelberg-New York, 1981. MR 0610244
Reference: [9] K. W. Chang, F. A. Howes: Nonlinear Singular Perturbation Phenomena: Theory and Applications.Springer-Verlag, New York, 1984. MR 0764395
.

Files

Files Size Format View
AplMat_46-2001-5_4.pdf 399.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo