Previous |  Up |  Next

Article

Title: Finite volume schemes for the generalized subjective surface equation in image segmentation (English)
Author: Mikula, Karol
Author: Remešíková, Mariana
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 4
Year: 2009
Pages: 646-656
Summary lang: English
.
Category: math
.
Summary: In this paper, we describe an efficient method for 3D image segmentation. The method uses a PDE model – the so called generalized subjective surface equation which is an equation of advection-diffusion type. The main goal is to develop an efficient and stable numerical method for solving this problem. The numerical solution is based on semi-implicit time discretization and flux-based level set finite volume space discretization. The space discretization is discussed in details and we introduce three possible alternatives of the so called diamond cell finite volume scheme for this type of 3D nonlinear diffusion equation. We test the performance of the method and all its variants introduced in the paper by determining the experimental order of convergence. Finally we show a couple of practical applications of the method. (English)
Keyword: image segmentation
Keyword: finite volume method
Keyword: flux-based level set method
MSC: 35A99
MSC: 35K93
MSC: 65D18
MSC: 65M08
MSC: 68U10
MSC: 74S10
idZBL: Zbl 1209.68473
idMR: MR2588630
.
Date available: 2010-06-02T19:02:19Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140062
.
Reference: [1] S. Corsaro, K. Mikula, A. Sarti, and F. Sgallari: Semi-implicit co-volume method in 3D image segmentation.SIAM J. Sci. Comput. 28 (2006), 6, 2248–2265. MR 2272260
Reference: [2] Y. Coudiere, J. P. Vila, and P. Villedieu: Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem.M2AN Math. Model. Numer. Anal. 33 (1999), 493–516. MR 1713235
Reference: [3] O. Drblíková and K. Mikula: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing.SIAM J. Numer. Anal. 46 (2007), 1, 37–60. MR 2377254
Reference: [4] P. Frolkovič, K. Mikula, N. Peyriéras, and A. Sarti: A counting number of cells and cell segmentation using advection-diffusion equations.Kybernetika 43 (2007), 6, 817–829. MR 2388396
Reference: [5] P. Frolkovič and K. Mikula: Flux-based level set method: A finite volume method for evolving interfaces.Appl. Numer. Math. 57 (2007), 4, 436–454. MR 2310759
Reference: [6] Z. Krivá, K.Mikula, N. Peyriéras, B. Rizzi, and A. Sarti: Zebrafish early embryogenesis 3D image filtering by nonlinear partial differential equations.Medical Image Analysis (to appear).
Reference: [7] K. Mikula, N. Peyriéras, M. Remešíková, and A. Sarti: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique.In: Proc. FVCA5 – 5th International Symposium on Finite Volumes for Complex Applications, Hermes Publ., Paris 2008. MR 2451456
Reference: [8] A. Sarti and G. Citti: Subjective surfaces and Riemannian mean curvature flow graphs.Acta Math. Univ. Comenian. 70 (2000), 85–103. MR 1865362
Reference: [9] A. Sarti, R. Malladi, and J. A. Sethian: Subjective Surfaces: A Method for Completing Missing Boundaries.Proc. Nat. Acad. Sci. 12 (2000), 97, 6258–6263. MR 1760935
Reference: [10] A. Sarti, R. Malladi, and J. A. Sethian: Subjective surfaces: A geometric nodel for boundary completion.Internat. J. Comput. Vision 46 (2002), 3, 201–221.
.

Files

Files Size Format View
Kybernetika_45-2009-4_9.pdf 5.113Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo