Previous |  Up |  Next

Article

Keywords:
$\star$-autonomous lattice; pseudo $\star$-autonomous lattice; residuated lattice; ideal; normal ideal; congruence
Summary:
Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals.
References:
[1] Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebra Comput. 13 (2003), 437-461. DOI 10.1142/S0218196703001511 | MR 2022118 | Zbl 1048.06010
[2] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer Berlin-Heidelberg-New York (1981). MR 0648287 | Zbl 0478.08001
[3] Galatos, N., Tsinakis, C.: Generalized MV-algebras. J. Algebra 283 (2005), 254-291. DOI 10.1016/j.jalgebra.2004.07.002 | MR 2102083 | Zbl 1063.06008
[4] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-valued Logic 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[5] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50 (1987), 1-102. DOI 10.1016/0304-3975(87)90045-4 | MR 0899269 | Zbl 0647.03016
[6] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: Ordered Algebraic Structures J. Martinez Kluwer Dordrecht (2002), 19-56. MR 2083033 | Zbl 1070.06005
[7] Leustean, I.: Non-commutative Łukasiewicz propositional logic. Arch. Math. Logic 45 (2006), 191-213. DOI 10.1007/s00153-005-0297-8 | MR 2209743 | Zbl 1096.03020
[8] Paoli, F.: Substructural Logic: A Primer. Kluwer Dordrecht (2002). MR 2039844
[9] Paoli, F.: $\star$-autonomous lattices. Stud. Log. 79 (2005), 283-304. DOI 10.1007/s11225-005-2979-y | MR 2135036
[10] Paoli, F.: $\star$-autonomous lattices and fuzzy sets. Soft Comput. 10 (2006), 607-617. DOI 10.1007/s00500-005-0512-x
[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255-273. DOI 10.1023/A:1021766309509 | MR 1905434
[12] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras. Algebra Univers. 48 (2002), 151-169. DOI 10.1007/PL00012447 | MR 1929902
[13] Yetter, D. N.: Quantales and (noncommutative) linear logic. J. Symb. Log. 55 (1990), 41-64. DOI 10.2307/2274953 | MR 1043543 | Zbl 0701.03026
Partner of
EuDML logo