Previous |  Up |  Next

Article

Title: A non commutative generalization of $\star$-autonomous lattices (English)
Author: Emanovský, P.
Author: Rachůnek, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 3
Year: 2008
Pages: 725-740
Summary lang: English
.
Category: math
.
Summary: Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals. (English)
Keyword: $\star$-autonomous lattice
Keyword: pseudo $\star$-autonomous lattice
Keyword: residuated lattice
Keyword: ideal
Keyword: normal ideal
Keyword: congruence
MSC: 03B47
MSC: 03B50
MSC: 06D35
MSC: 06F05
MSC: 06F15
idZBL: Zbl 1174.06008
idMR: MR2455934
.
Date available: 2010-07-20T14:02:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140417
.
Reference: [1] Blount, K., Tsinakis, C.: The structure of residuated lattices.Int. J. Algebra Comput. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118, 10.1142/S0218196703001511
Reference: [2] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer Berlin-Heidelberg-New York (1981). Zbl 0478.08001, MR 0648287
Reference: [3] Galatos, N., Tsinakis, C.: Generalized MV-algebras.J. Algebra 283 (2005), 254-291. Zbl 1063.06008, MR 2102083, 10.1016/j.jalgebra.2004.07.002
Reference: [4] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras.Mult.-valued Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [5] Girard, J.-Y.: Linear logic.Theor. Comput. Sci. 50 (1987), 1-102. Zbl 0647.03016, MR 0899269, 10.1016/0304-3975(87)90045-4
Reference: [6] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.In: Ordered Algebraic Structures J. Martinez Kluwer Dordrecht (2002), 19-56. Zbl 1070.06005, MR 2083033
Reference: [7] Leustean, I.: Non-commutative Łukasiewicz propositional logic.Arch. Math. Logic 45 (2006), 191-213. Zbl 1096.03020, MR 2209743, 10.1007/s00153-005-0297-8
Reference: [8] Paoli, F.: Substructural Logic: A Primer.Kluwer Dordrecht (2002). MR 2039844
Reference: [9] Paoli, F.: $\star$-autonomous lattices.Stud. Log. 79 (2005), 283-304. MR 2135036, 10.1007/s11225-005-2979-y
Reference: [10] Paoli, F.: $\star$-autonomous lattices and fuzzy sets.Soft Comput. 10 (2006), 607-617. MR 2135036, 10.1007/s00500-005-0512-x
Reference: [11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509
Reference: [12] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras.Algebra Univers. 48 (2002), 151-169. MR 1929902, 10.1007/PL00012447
Reference: [13] Yetter, D. N.: Quantales and (noncommutative) linear logic.J. Symb. Log. 55 (1990), 41-64. Zbl 0701.03026, MR 1043543, 10.2307/2274953
.

Files

Files Size Format View
CzechMathJ_58-2008-3_11.pdf 298.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo