Title:
|
A non commutative generalization of $\star$-autonomous lattices (English) |
Author:
|
Emanovský, P. |
Author:
|
Rachůnek, J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2008 |
Pages:
|
725-740 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals. (English) |
Keyword:
|
$\star$-autonomous lattice |
Keyword:
|
pseudo $\star$-autonomous lattice |
Keyword:
|
residuated lattice |
Keyword:
|
ideal |
Keyword:
|
normal ideal |
Keyword:
|
congruence |
MSC:
|
03B47 |
MSC:
|
03B50 |
MSC:
|
06D35 |
MSC:
|
06F05 |
MSC:
|
06F15 |
idZBL:
|
Zbl 1174.06008 |
idMR:
|
MR2455934 |
. |
Date available:
|
2010-07-20T14:02:59Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140417 |
. |
Reference:
|
[1] Blount, K., Tsinakis, C.: The structure of residuated lattices.Int. J. Algebra Comput. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118, 10.1142/S0218196703001511 |
Reference:
|
[2] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer Berlin-Heidelberg-New York (1981). Zbl 0478.08001, MR 0648287 |
Reference:
|
[3] Galatos, N., Tsinakis, C.: Generalized MV-algebras.J. Algebra 283 (2005), 254-291. Zbl 1063.06008, MR 2102083, 10.1016/j.jalgebra.2004.07.002 |
Reference:
|
[4] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras.Mult.-valued Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[5] Girard, J.-Y.: Linear logic.Theor. Comput. Sci. 50 (1987), 1-102. Zbl 0647.03016, MR 0899269, 10.1016/0304-3975(87)90045-4 |
Reference:
|
[6] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.In: Ordered Algebraic Structures J. Martinez Kluwer Dordrecht (2002), 19-56. Zbl 1070.06005, MR 2083033 |
Reference:
|
[7] Leustean, I.: Non-commutative Łukasiewicz propositional logic.Arch. Math. Logic 45 (2006), 191-213. Zbl 1096.03020, MR 2209743, 10.1007/s00153-005-0297-8 |
Reference:
|
[8] Paoli, F.: Substructural Logic: A Primer.Kluwer Dordrecht (2002). MR 2039844 |
Reference:
|
[9] Paoli, F.: $\star$-autonomous lattices.Stud. Log. 79 (2005), 283-304. MR 2135036, 10.1007/s11225-005-2979-y |
Reference:
|
[10] Paoli, F.: $\star$-autonomous lattices and fuzzy sets.Soft Comput. 10 (2006), 607-617. MR 2135036, 10.1007/s00500-005-0512-x |
Reference:
|
[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[12] Rachůnek, J.: Prime spectra of non-commutative generalizations of $MV$-algebras.Algebra Univers. 48 (2002), 151-169. MR 1929902, 10.1007/PL00012447 |
Reference:
|
[13] Yetter, D. N.: Quantales and (noncommutative) linear logic.J. Symb. Log. 55 (1990), 41-64. Zbl 0701.03026, MR 1043543, 10.2307/2274953 |
. |