Previous |  Up |  Next

Article

Title: Projection representable relations on Menger $(2,n)$-semigroups (English)
Author: Dudek, Wiesław A.
Author: Trokhimenko, Valentin S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1015-1037
Summary lang: English
.
Category: math
.
Summary: Abstract characterizations of relations of nonempty intersection, inclusion end equality of domains for partial $n$-place functions are presented. Representations of Menger $(2,n)$-semigroups by partial $n$-place functions closed with respect to these relations are investigated. (English)
Keyword: $n$-place function
Keyword: algebra of functions
Keyword: Menger algebra
Keyword: $(2,n)$-semigroup
MSC: 08A55
MSC: 08A62
MSC: 08N05
MSC: 20N15
idZBL: Zbl 1165.20324
idMR: MR2471162
.
Date available: 2010-07-21T08:08:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140436
.
Reference: [1] Dudek, W. A., Trokhimenko, V. S.: Functional Menger ${\cal P}$-algebras.Commun. Algebra 30 (2002), 5921-5931. Zbl 1018.20057, MR 1941932, 10.1081/AGB-120016022
Reference: [2] Dudek, W. A., Trokhimenko, V. S.: Representations of Menger $(2,n)$-semigroups by multiplace functions.Commun. Algebra 34 (2006), 259-274. Zbl 1092.20051, MR 2194765, 10.1080/00927870500346255
Reference: [3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions.Russian Centrul Ed. USM. Khishinev, 2006, ISBN 978-9975-70-621-6. Zbl 1115.08001, MR 2292134
Reference: [4] Mann, H. B.: On orthogonal Latin squares.Bull. Amer. Math. Soc. 50 (1944), 249-257. Zbl 0060.32307, MR 0010401, 10.1090/S0002-9904-1944-08127-5
Reference: [5] Novák, V., Novotný, M.: Transitive ternary relations and quasiorderings.Arch. Math. (Brno) 1/2 (1989), 5-12. MR 1189193
Reference: [6] Riguet, J.: Relations binaires, fermetures, correspondances de Galois.Bull. Soc. Math. France 76 (1948), 114-155. Zbl 0033.00603, MR 0028814, 10.24033/bsmf.1401
Reference: [7] Schein, B. M.: A relation of co-definability on semigroups of functions.Russian Ordered sets and lattices 1 (1971), 86-89 (Izdat. Saratov. Gos. Univ.). MR 0379727
Reference: [8] Schein, B. M.: Projection partitions of function semigroups.Math. Rep. Acad. Sci., R. Soc. Canada 1 (1979), 67-70. Zbl 0404.20058, MR 0519525
Reference: [9] Schein, B. M.: Lectures on semigroups of transformations.Amer. Math. Soc. Translat. 113 (1979), 123-181. Zbl 0404.20057, 10.1090/trans2/113/06
Reference: [10] Schein, B. M., Trohimenko, V. S.: Algebras of multiplace functions.Semigroup Forum 17 (1979), 1-64. Zbl 0397.08001, MR 0521147, 10.1007/BF02194309
Reference: [11] Sokhatskij, F. N.: An abstract characterization of $(2,n)$-semigroups of $n$-ary operations.Russian Mat. Issled. 65 (1982), 132-139. MR 0669748
Reference: [12] Trokhimenko, V. S.: Ordered algebras of multiplace functions.Russian Izv. Vyssh. Uchebn. Zaved. Matematika 1 (1971), 90-98. MR 0285461
Reference: [13] Trokhimenko, V. S.: Abstract characterizations of some algebras of multiplace functions.Russian Izv. Yyssh. Uchebn. Zaved. Matematika 4 (1971), 87-95. Zbl 0221.08002
Reference: [14] Trokhimenko, V. S.: Characterization of the co-definability relation on ordered algebras of multiplace functions.Russian Izv. Vyssh. Uchebn. Zaved. Matematika 9 (1977), 80-88.
Reference: [15] Trokhimenko, V. S.: Stationary subsets and stabilizers of restrictive Menger P-algebras of multiplace functions.Algebra Universalis 44 (2000), 129-142. Zbl 1014.08004, MR 1803079, 10.1007/s000120050175
Reference: [16] Yakubov, T.: On $(2,n)$-semigroups of $n$-ary operations.Russian Bull. Akad. Ştiinţa SSR Moldov. 1 (1974), 29-46.
.

Files

Files Size Format View
CzechMathJ_58-2008-4_10.pdf 353.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo