Previous |  Up |  Next

Article

Title: A formula for the Bloch norm of a $C^1$-function on the unit ball of $\Bbb C^n$ (English)
Author: Pavlović, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1039-1043
Summary lang: English
.
Category: math
.
Summary: For a $C^1$-function $f$ on the unit ball $\mathbb B \subset \mathbb C ^n$ we define the Bloch norm by $\|f\|_\mathfrak B=\sup \|\tilde df\|,$ where $\tilde df$ is the invariant derivative of $f,$ and then show that $$ \|f\|_\mathfrak B= \sup _{z,w\in {\mathbb B} \atop z\neq w} (1-|z|^2)^{1/2}(1-|w|^2)^{1/2}\frac {|f(z)-f(w)|}{|w-P_wz-s_wQ_wz|}.$$ (English)
Keyword: Bloch norm
Keyword: Möbius transformation
MSC: 30D45
MSC: 32A18
MSC: 32A37
MSC: 46E15
idZBL: Zbl 1174.32003
idMR: MR2471163
.
Date available: 2010-07-21T08:08:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140437
.
Reference: [1] Holland, F., Walsh, D.: Criteria for membership of Bloch space and its subspace, BMOA.Math. Ann. 273 (1986), 317-335. Zbl 0561.30025, MR 0817885, 10.1007/BF01451410
Reference: [2] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of {${\mathbb C}^n$}.Complex Variables Theory Appl. 44 (2001), 1-12. MR 1826712, 10.1080/17476930108815339
Reference: [3] Pavlovi'c, M.: On the Holland-Walsh characterization of Bloch functions.Proc. Edinb. Math. Soc. 51 (2008), 439-441. MR 2465917, 10.1017/S0013091506001076
Reference: [4] Rudin, W.: Function Theory in the Unit Ball of {$C^n$}.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York (1980). MR 0601594
.

Files

Files Size Format View
CzechMathJ_58-2008-4_11.pdf 211.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo