Previous |  Up |  Next

Article

Title: Convergence theorems for the Birkhoff integral (English)
Author: Balcerzak, Marek
Author: Potyrała, Monika
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 4
Year: 2008
Pages: 1207-1219
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$'s is involved and we assume $f_n\to f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed. (English)
Keyword: Birkhoff integral
Keyword: convergence theorems
Keyword: vector valued functions
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1174.28011
idMR: MR2471177
.
Date available: 2010-07-21T08:15:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140451
.
Reference: [1] Birkhoff, G.: Integration of functions with values in a Banach space.Trans. Amer. Math. Soc. 38 (1935), 357-378. Zbl 0013.00803, MR 1501815
Reference: [2] Cascales, B., Rodríguez, J.: The Birkhoff integral and the property of Bourgain.Math. Ann. 331 (2005), 259-279. MR 2115456, 10.1007/s00208-004-0581-7
Reference: [3] J. Diestel, J. J. Uhl., Jr.: Vector measures.Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island (1977). Zbl 0369.46039, MR 0453964
Reference: [4] Fremlin, D. H.: The McShane and Birkhoff integrals of vector-valued functions.University of Essex, Mathematics Department Reaearch, 1999, Report 92-10, available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm.
Reference: [5] Hille, E., Phillips, R.: Functional Analysis and Semi-Groups.Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island (1957). MR 0089373
Reference: [6] Kadets, V. M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K.: Some remarks on vector-valued integration.Mat. Fiz. Anal. Geom. 9 (2002), 48-65. Zbl 1084.28008, MR 1911073
Reference: [7] Kadets, V. M., Tseytlin, L. M.: On `integration' of non-integrable vector-valued functions.Mat. Fiz. Anal. Geom. 7 (2000), 49-65. Zbl 0974.28007, MR 1760946
Reference: [8] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Sequence Spaces.Springer-Verlag, Berlin, Heidelberg, New York (1977). Zbl 0362.46013, MR 0500056
Reference: [9] Marraffa, V.: A characterization of absolutely summing operators by means of McShane integrable functions.J. Math. Anal. Appl. 293 (2004), 71-78. Zbl 1087.47023, MR 2052532, 10.1016/j.jmaa.2003.12.029
Reference: [10] Potyrała, M.: Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions.Tatra Mt. Math. Publ. 35 (2007), 97-106. MR 2372438
Reference: [11] Potyrała, M.: The Birkhoff and variational McShane integrals of vector valued functions.Folia Mathematica, Acta Universitatis Lodziensis 13 (2006), 31-40. MR 2675441
Reference: [12] Rodríguez, J.: On the existence of Pettis integrable functions which are not Birkhoff integrable.Proc. Amer. Math. Soc. 133 (2005), 1157-1163. MR 2117218, 10.1090/S0002-9939-04-07665-8
Reference: [13] Rodríguez, J.: On integration of vector functions with respect to vector measures.Czech. Math. J. 56 (2006), 805-825. MR 2261655, 10.1007/s10587-006-0058-9
Reference: [14] Schwabik, Š., Guoju, Ye: Topics in Banach Space Integration.Series in Real Analysis, 10, World Scientific, Singapore (2005). MR 2167754
.

Files

Files Size Format View
CzechMathJ_58-2008-4_25.pdf 278.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo