Title:
|
On super vertex-graceful unicyclic graphs (English) |
Author:
|
Lee, Sin-Min |
Author:
|
Leung, Elo |
Author:
|
Ng, Ho Kuen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
1-22 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},&\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},&\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},&\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},&\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful. (English) |
Keyword:
|
graceful |
Keyword:
|
edge-graceful |
Keyword:
|
super edge-graceful |
Keyword:
|
super vertex-graceful |
Keyword:
|
amalgamation |
Keyword:
|
trees |
Keyword:
|
unicyclic graphs |
MSC:
|
05C78 |
idZBL:
|
Zbl 1224.05447 |
idMR:
|
MR2486612 |
. |
Date available:
|
2010-07-20T14:47:47Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140458 |
. |
Reference:
|
[1] Cabannis, S., Mitchem, J., Low, R.: On edge-graceful regular graphs and trees.Ars Combin. 34 (1992), 129-142. MR 1206556 |
Reference:
|
[2] Gallian, J. A.: A dynamic survey of graph labeling.Electronic J. Combin. (2001), 6 1-144. MR 1668059 |
Reference:
|
[3] Keene, J., Simoson, A.: Balanced strands for asymmetric, edge-graceful spiders.Ars Combin. 42 (1996), 49-64. Zbl 0856.05087, MR 1386927 |
Reference:
|
[4] Kuan, Q., Lee, S.-M., Mitchem, J., Wang, A. K.: On edge-graceful unicyclic graphs.Congress. Numer. 61 (1988), 65-74. MR 0961638 |
Reference:
|
[5] Lee, L. M., Lee, S.-M., Murty, G.: On edge-graceful labelings of complete graphs-solutions of Lo's conjecture.Congress. Numer. 62 (1988), 225-233. MR 0961686 |
Reference:
|
[6] Lee, S.-M.: A conjecture on edge-graceful trees.Scientia, Ser. A 3 (1989), 45-57. Zbl 0741.05025, MR 2309605 |
Reference:
|
[7] Lee, S.-M.: New directions in the theory of edge-graceful graphs.Proceedings of the 6th Caribbean Conference on Combinatorics & Computing (1991), 216-231. |
Reference:
|
[8] Lee, S.-M.: On strongly indexable graphs and super vertex-graceful graphs, manuscript.. |
Reference:
|
[9] Lee, S.-M., Leung, E.: On super vertex-graceful trees.Congress. Numer. 167 (2004), 3-26. Zbl 1062.05130, MR 2122017 |
Reference:
|
[10] Lee, S.-M., Ma, P., Valdes, L., Tong, S.-M.: On the edge-graceful grids.Congress. Numer. 154 (2002), 61-77. Zbl 1022.05074, MR 1980029 |
Reference:
|
[11] Lee, S.-M., Seah, E.: Edge-graceful labelings of regular complete $k$-partite graphs.Congress. Numer. 75 (1990), 41-50. Zbl 0727.05051, MR 1069161 |
Reference:
|
[12] Lee, S.-M., Seah, E.: On edge-gracefulness of the composition of step graphs with null graphs.Combinatorics, Algorithms, and Applications in Society for Industrial and Applied Mathematics (1991), 326-330. Zbl 0741.05060, MR 1132915 |
Reference:
|
[13] Lee, S.-M., Seah, E.: On the edge-graceful $(n, kn)$-multigraphs conjecture.J. Comb. Math. and Comb. Computing 9 (1991), 141-147. Zbl 0735.05072, MR 1111847 |
Reference:
|
[14] Lee, S.-M., Seah, E., Lo, S. P.: On edge-graceful 2-regular graphs.J. Comb. Math. and Comb. Computing 12 (1992), 109-117. |
Reference:
|
[15] Lee, S.-M., Seah, E., Tong, S.-M.: On the edge-magic and edge-graceful total graphs conjecture.Congress. Numer. 141 (1999), 37-48. Zbl 0970.05036, MR 1745223 |
Reference:
|
[16] Lee, S.-M., Seah, E., Wang, P. C.: On edge-gracefulness of the kth power graphs.Bull. Inst. Math. Academia Sinica 18 (1990), 1-11. Zbl 0699.05048, MR 1072825 |
Reference:
|
[17] Lo, S. P.: On edge-graceful labelings of graphs.Congress. Numer. 50 (1985), 231-241. Zbl 0597.05054, MR 0833554 |
Reference:
|
[18] Peng, J., Li, W.: Edge-gracefulness of $Cm \times Cn$.Proceedings of the Sixth Conference of Operations Research Society of China Hong Kong: Global-Link Publishing Company, Changsha (2000), 942-948. |
Reference:
|
[19] Mitchem, J., Simoson, A.: On edge-graceful and super-edge-graceful graphs.Ars Combin. 37 (1994), 97-111. Zbl 0805.05074, MR 1282548 |
Reference:
|
[20] Riskin, A., Wilson, S.: Edge graceful labellings of disjoint unions of cycles.Bulletin of the Institute of Combinatorics and its Applications 22 (1998), 53-58. Zbl 0894.05047, MR 1489867 |
Reference:
|
[21] Schaffer, K., Lee, S.-M.: Edge-graceful and edge-magic labelings of Cartesian products of graphs.Congress. Numer. 141 (1999), 119-134. Zbl 0968.05067, MR 1745230 |
Reference:
|
[22] Shiu, W. C., Lee, S.-M., Schaffer, K.: Some $k$-fold edge-graceful labelings of $(p,p-1)$-graphs.J. Comb. Math. and Comb. Computing 38 (2001), 81-95. Zbl 0977.05122, MR 1853007 |
Reference:
|
[23] Wilson, S., Riskin, A.: Edge-graceful labellings of odd cycles and their products.Bulletin of the ICA 24 (1998), 57-64. Zbl 0913.05084, MR 1638978 |
. |